Yıl 2020, Cilt 24 , Sayı 5, Sayfalar 892 - 913 2020-10-01

Shape memory alloys’ characteristics are different from ordinary materials because they can memorize their pre-determined shape, thus they are excellent candidates for different applications. In this review article, the most interesting parameters that researchers are using in their investigation have been highlighted. Also, the popular techniques used for the characterization of shape memory alloys have been described. The diagrams and sketches can show a clear view of metallurgies and related research areas.
Shape memory alloy, diagrams, sketches, characterization process
  • W. J. Buehler, F. E. Wang, "A summary of recent research on the nitinol alloys and their potential application in ocean engineering," Ocean Engineering, vol. 1, no. 1, pp. 105-20, 1968.
  • F. J. Zanner, L. A. Bertram, "Vacuum arc remelting: An overview," STIN, vol. 86, no., pp. 16417, 1985.
  • F. Swinkels, D. Wilkinson, E. Arzt, M. F. Ashby, "Mechanisms of hot-isostatic pressing," vol., no., pp., 1983.
  • V. Mamedov, "Spark plasma sintering as advanced PM sintering method," Powder Metall, vol. 45, no. 4, pp. 322-8, 2002.
  • D. L. Bourell, H. L. Marcus, J. W. Barlow, J. J. Beaman, "Selective laser sintering of metals and ceramics," International Journal of Powder Metallurgy (Princeton, New Jersey), vol. 28, no. 4, pp. 369-81, 1992.
  • X. Chen, K. Liu, W. Guo, N. Gangil, A. N. Siddiquee, S. Konovalov, "The fabrication of NiTi shape memory alloy by selective laser melting: a review," Rapid Prototyping Journal, vol., no., pp., 2019.
  • K. Chang. Chapter 14-Rapid Prototyping. e-Design. Boston: Academic Press; 2015.
  • M. H. Elahinia, M. Hashemi, M. Tabesh, S. B. Bhaduri, "Manufacturing and processing of NiTi implants: a review," Prog Mater Sci, vol. 57, no. 5, pp. 911-46, 2012.
  • J. M. Jani, M. Leary, A. Subic, M. A. Gibson, "A review of shape memory alloy research, applications and opportunities," Materials & Design (1980-2015), vol. 56, no., pp. 1078-113, 2014.
  • A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa, S. Viscuso, "The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators," Sensors and Actuators A: Physical, vol. 158, no. 1, pp. 149-60, 2010.
  • C. Cisse, W. Zaki, T. B. Zineb, "A review of modeling techniques for advanced effects in shape memory alloy behavior," Smart Mater Struct, vol. 25, no. 10, pp. 103001, 2016.
  • M. Follador, M. Cianchetti, A. Arienti, C. Laschi, "A general method for the design and fabrication of shape memory alloy active spring actuators," Smart Mater Struct, vol. 21, no. 11, pp. 115029, 2012.
  • I. N. Qader, M. Kök, F. Dağdelen, Y. Aydogdu, "A Review of Smart Materials: Researches and Applications," El-Cezerî Journal of Science and Engineering, vol. 6, no. 3, pp. 755-88, 2019.
  • S. S. Mohammed, K. Mediha, I. N. Qader, F. Dağdelen, "The Developments of piezoelectric Materials and Shape Memory Alloys in Robotic Actuator Systems," Avrupa Bilim ve Teknoloji Dergisi, vol., no. 17, pp. 1014-30, 2019.
  • K. Otsuka, C. M. Wayman. Shape memory materials. Cambridge university press; 1999.
  • M. Niinomi, "Shape memory, superelastic and low Young’s modulus alloys," Biomaterials for Spinal Surgery. Elsevier; 2012. p. 462-90.
  • E. Ercan, F. Dagdelen, I. Qader, "Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs," J Therm Anal Calorim, vol. 139, no. 1, pp. 29-36, 2020.
  • M. Kök, I. N. Qader, S. S. Mohammed, E. ÖNER, F. Dağdelen, Y. Aydogdu, "Thermal Stability and Some Thermodynamics Analysis of Heat Treated Quaternary CuAlNiTa Shape Memory Alloy," Materials Research Express, vol. 7, no., pp., 2020.
  • E. Acar, M. Kok, I. Qader, "Exploring surface oxidation behavior of NiTi–V alloys," The European Physical Journal Plus, vol. 135, no. 1, pp. 58, 2020.
  • F. Dagdelen, B. Esra, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca et al., "Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys," JOM, vol. 72, no., pp. 1664–72, 2020.
  • S. Buytoz, F. Dagdelen, I. Qader, M. Kok, B. Tanyildizi, "Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition," Metals and Materials International, vol., no., pp. 1-12, 2019.
  • M. Kök, H. S. A. Zardawi, I. N. Qader, M. S. Kanca, "The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys," The European Physical Journal Plus, vol. 134, no. 5, pp. 197, 2019.
  • F. Dagdelen, M. Kok, I. Qader, "Effects of Ta Content on Thermodynamic Properties and Transformation Temperatures of Shape Memory NiTi Alloy," Metals and Materials International, vol., no., pp. 1420–7, 2019.
  • F. Dagdelen, M. A. K. Aldalawi, M. Kok, I. N. Qader, "Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy," The European Physical Journal Plus, vol. 134, no. 2, pp. 66, 2019.
  • I. N. Qader, M. Kök, F. Dağdelen, "Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy," Physica B: Condensed Matter, vol. 553, no., pp. 1-5, 2019.
  • M. Kok, A. O. A. Al-Jaf, Z. D. Çirak, I. N. Qader, E. Özen, "Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy," J Therm Anal Calorim, vol., no., pp., 2019.
  • I. N. Qader, M. Kok, Z. D. Cirak, "The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys," J Therm Anal Calorim, vol., no., pp., 2020.
  • I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen, Y. Aydogdu, "The Influence of Time-Dependent Aging Process on the Thermodynamic Parameters and Microstructures of Quaternary Cu79–Al12–Ni4–Nb5 (wt%) Shape Memory Alloy," Iranian Journal of Science and Technology, Transactions A: Science, vol., no., pp., 2020.
  • S. S. Mohammed, M. Kok, I. N. Qader, M. S. Kanca, E. Ercan, F. Dagdelen et al., "Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting," Iranian Journal of Science and Technology, Transactions A: Science, vol., no., pp., 2020.
  • W. J. Buehler, J. Gilfrich, R. Wiley, "Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi," J Appl Phys, vol. 34, no. 5, pp. 1475-7, 1963.
  • T. Fukuda, T. Kawamura, T. Kakeshita, "Time-temperature-transformation diagram for the martensitic transformation in a titanium-nickel shape memory alloy," J Alloys Compd, vol. 683, no., pp. 481-4, 2016.
  • S. N. S. Al-Humairi, "Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties," Recent Advances in Engineering Materials and Metallurgy. IntechOpen; 2019.
  • M. Mehrpouya, "Laser welding of NiTi shape memory sheets: experimental analysis and numerical modeling," Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, vol., no., pp. 134, 2017.
  • A. Ibarra, J. San Juan, E. Bocanegra, M. Nó, "Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy," Materials Science and Engineering: A, vol. 438, no., pp. 782-6, 2006.
  • E. Acar, M. Çalışkan, H. E. Karaca, "Differential scanning calorimetry response of aged NiTiHfPd shape memory alloys," Appl Phys A, vol. 125, no. 4, pp. 239, 2019.
  • C. H. Gonzalez, C. A. d. N. Oliveira, E. A. C. d. Pina, S. L. Urtiga Filho, O. O. d. Araújo Filho, C. J. d. Araújo, "Heat treatments and thermomechanical cycling influences on the R-phase in Ti-Ni shape memory alloys," Materials Research, vol. 13, no. 3, pp. 325-31, 2010.
  • T. Tadaki, Y. Nakata, K. i. Shimizu, "Thermal cycling effects in an aged Ni-rich Ti–Ni shape memory alloy," Transactions of the Japan institute of metals, vol. 28, no. 11, pp. 883-90, 1987.
  • A. Ahadi, E. Rezaei, "Microstructure and phase transformation behavior of a stress-assisted heat-treated Ti-rich NiTi shape memory alloy," J Mater Eng Perform, vol. 21, no. 8, pp. 1806-12, 2012.
  • W. D. Callister, "An introduction to materials science and engineering," John Wiley and Sons Inc, vol., no., pp., 2007.
  • Y. Sun, F. Jiang, H. Zhang, J. Su, W. Yuan, "Residual stress relief in Al–Zn–Mg–Cu alloy by a new multistage interrupted artificial aging treatment," Materials & Design, vol. 92, no., pp. 281-7, 2016.
  • P. Dong, S. Song, J. Zhang, "Analysis of residual stress relief mechanisms in post-weld heat treatment," International Journal of Pressure Vessels and Piping, vol. 122, no., pp. 6-14, 2014.
  • J. Uchil, K. Mahesh, K. G. Kumara, "Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy," Physica B: Condensed Matter, vol. 324, no. 1-4, pp. 419-28, 2002.
  • K. Wada, Y. Liu, "Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions," Smart Mater Struct, vol. 14, no. 5, pp. S273, 2005.
  • D. Song, G. Kang, Q. Kan, C. Yu, C. Zhang, "The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy," Smart Mater Struct, vol. 23, no. 1, pp. 015008, 2013.
  • M. S. Alam, M. A. Youssef, M. L. Nehdi, "Exploratory investigation on mechanical anchors for connecting SMA bars to steel or FRP bars," Mater Struct, vol. 43, no. 1, pp. 91-107, 2010.
  • R. DesRoches, J. McCormick, M. Delemont, "Cyclic properties of superelastic shape memory alloy wires and bars," Journal of Structural Engineering, vol. 130, no. 1, pp. 38-46, 2004.
  • B. Bertheville, J.-E. Bidaux, "Alternative powder metallurgical processing of Ti-rich NiTi shape-memory alloys," Scripta Mater, vol. 52, no. 6, pp. 507-12, 2005.
  • H. Jiang, S. Cao, C. Ke, X. Ma, X. Zhang, "Fine-grained bulk NiTi shape memory alloy fabricated by rapid solidification process and its mechanical properties and damping performance," Journal of Materials Science & Technology, vol. 29, no. 9, pp. 855-62, 2013.
  • E. M. Sharifi, A. Kermanpur, F. Karimzadeh, A. Esmaili, "Formation of the nanocrystalline structure in an equiatomic NiTi shape-memory alloy by thermomechanical processing," J Mater Eng Perform, vol. 23, no. 4, pp. 1408-14, 2014.
  • L. Petrini, F. Migliavacca, "Biomedical applications of shape memory alloys," Journal of Metallurgy, vol. 2011, no., pp., 2011.
  • S. Miyazaki, R. Sachdeva, "Shape memory effect and superelasticity in Ti—Ni alloys," Shape memory alloys for biomedical applications. Elsevier; 2009. p. 3-19.
  • D. Stoeckel, T. Waram, editors. Use of Ni-Ti shape memory alloys for thermal sensor-actuators. Active and adaptive optical components; 1992: International Society for Optics and Photonics.
  • D. Pitt, J. Dunne, E. White, E. Garcia, editors. SAMPSON smart inlet SMA powered adaptive lip design and static test. 19th AIAA Applied Aerodynamics Conference; 2001.
  • D. M. Pitt, J. P. Dunne, E. V. White, editors. SAMPSON smart inlet design overview and wind tunnel test: Part I: design overview. Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies; 2002: International Society for Optics and Photonics.
  • J. Mabe, F. Calkins, G. Butler, editors. Boeing's variable geometry chevron, morphing aerostructure for jet noise reduction. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th; 2006.
  • D. J. Arbogast, R. T. Ruggeri, R. C. Bussom, editors. Development of a 1/4-scale NiTinol actuator for reconfigurable structures. Industrial and Commercial Applications of Smart Structures Technologies 2008; 2008: International Society for Optics and Photonics.
  • A. R. Pelton, J. Dicello, S. Miyazaki, "Optimisation of processing and properties of medical grade Nitinol wire," Minim Invasive Ther Allied Technol, vol. 9, no. 2, pp. 107-18, 2000.
  • U. Sari, T. Kirindi, F. Ozcan, M. Dikici, "Effects of aging on the microstructure of a Cu-Al-Ni-Mn shape memory alloy," International Journal of Minerals, Metallurgy, and Materials, vol. 18, no. 4, pp. 430, 2011.
  • A. Shamimi, B. Amin-Ahmadi, A. Stebner, T. Duerig, "The effect of low temperature aging and the evolution of R-phase in Ni-rich NiTi," Shape Memory and Superelasticity, vol. 4, no. 4, pp. 417-27, 2018.
  • F. Dagdelen, M. Kanca, M. Kok, "Effects of Different Quenching Treatments on Thermal Properties and Microstructure in Quaternary Cu-Based HTSMA," Physics of Metals and Metallography, vol. 120, no. 13, pp. 1378-83, 2019.
  • S. N. Saud, E. Hamzah, T. Abubakar, S. Farahany, "Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media," J Mater Eng Perform, vol. 23, no. 1, pp. 255-61, 2014.
  • C. Tatar, R. Acar, I. N. Qader, "Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method," The European Physical Journal Plus, vol. 135, no., pp. 311, 2020.
  • J. Khalil-Allafi, B. Amin-Ahmadi, "The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys," J Alloys Compd, vol. 487, no. 1-2, pp. 363-6, 2009.
  • K. Mehrabi, H. Bahmanpour, A. Shokuhfar, A. Kneissl, "Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys," Materials Science and Engineering: A, vol. 481, no., pp. 693-6, 2008.
  • Y. Zheng, B. Zhang, B. Wang, Y. Wang, L. Li, Q. Yang et al., "Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag," Acta biomaterialia, vol. 7, no. 6, pp. 2758-67, 2011.
  • E. M. Sharifi, F. Karimzadeh, A. Kermanpur, "The effect of cold rolling and annealing on microstructure and tensile properties of the nanostructured Ni50Ti50 shape memory alloy," Materials Science and Engineering: A, vol. 607, no., pp. 33-7, 2014.
  • T. Hu, C. Wen, G. Sun, S. Wu, C. Chu, Z. Wu et al., "Wear resistance of NiTi alloy after surface mechanical attrition treatment," Surf Coat Technol, vol. 205, no. 2, pp. 506-10, 2010.
  • Y. Cheng, W. Cai, H. Li, Y. Zheng, L. Zhao, "Surface characteristics and corrosion resistance properties of TiNi shape memory alloy coated with Ta," Surf Coat Technol, vol. 186, no. 3, pp. 346-52, 2004.
  • H. Maleki-Ghaleh, V. Khalili, J. Khalil-Allafi, M. Javidi, "Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process," Surf Coat Technol, vol. 208, no., pp. 57-63, 2012.
  • M. E. Brown, P. K. Gallagher. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Elsevier; 2011.
  • T. Sattar, T. Manzoor, F. A. Khalid, M. Akmal, G. Saeed, "Improved in vitro bioactivity and electrochemical behavior of hydroxyapatite-coated NiTi shape memory alloy," Journal of materials science, vol. 54, no. 9, pp. 7300-6, 2019.
  • K. K. Alaneme, E. A. Okotete, N. Maledi, "Phase characterisation and mechanical behaviour of Fe–B modified Cu–Zn–Al shape memory alloys," Journal of materials research and technology, vol. 6, no. 2, pp. 136-46, 2017.
  • S. Green, D. Grant, N. Kelly, "Powder metallurgical processing of Ni–Ti shape memory alloy," Powder Metall, vol. 40, no. 1, pp. 43-7, 1997.
  • X. Wang, Y. Bellouard, J. Vlassak, "Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties," Acta Mater, vol. 53, no. 18, pp. 4955-61, 2005.
  • F. Dagdelen, E. Ercan, "The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures," J Therm Anal Calorim, vol. 115, no. 1, pp. 561-5, 2014.
  • K. Herrmann. Hardness testing: principles and applications. ASM international; 2011.
  • H. Chandler. Hardness testing. ASM international; 1999.
  • W. F. Gale, T. C. Totemeier. Smithells metals reference book. Elsevier; 2003.
  • Y. Uematsu, T. Kakiuchi, Y. Tozaki, editors. Fatigue behavior of dissimilar friction stir spot welds between A6061 and AZ31 fabricated by a scroll grooved tool without probe. Proceedings of the 1st International Joint Symposium on Joining and Welding; 2013: Elsevier.
  • M. Mathew, K. Shenoy, K. Ravishankar, "Vickers hardness and specific wear rate of poly propylene reinforced PMMA," International journal of scientific study, vol. 2, no. 3, pp. 71-5, 2014.
  • H. Wu, S. Wen, K. Gao, H. Huang, W. Wang, Z. Nie, "Effect of Er additions on the precipitation strengthening of Al–Hf alloys," Scripta Mater, vol. 87, no., pp. 5-8, 2014.
  • M. Z. Yahaya, A. A. Mohamad, "Hardness testing of lead-free solders: a review," Soldering & Surface Mount Technology, vol., no., pp., 2017.
  • A. Michael, Y. Zhou, M. Khan, "Novel method to analyse tensile properties of ultra-fine NiTi wires with a visual extensometer," Mater Lett, vol. 182, no., pp. 177-80, 2016.
  • A. Biesiekierski, J. Wang, M. A.-H. Gepreel, C. Wen, "A new look at biomedical Ti-based shape memory alloys," Acta biomaterialia, vol. 8, no. 5, pp. 1661-9, 2012.
  • B. Liu, R. Villavicencio, C. G. Soares, "Failure characteristics of strength-equivalent aluminium and steel plates in impact conditions," Analysis and Design of Marine Structures, vol., no., pp. 167, 2013.
  • C. Maletta, A. Falvo, F. Furgiuele, J. Reddy, "A phenomenological model for superelasticity in NiTi alloys," Smart Mater Struct, vol. 18, no. 2, pp. 025005, 2009.
  • Q. Li, Y.-Y. Xia, J.-C. Tang, R.-Y. Wang, C.-Y. Bei, Y. Zeng, "In vitro and in vivo biocompatibility investigation of diamond-like carbon coated nickel-titanium shape memory alloy," Artificial Cells, Blood Substitutes, and Biotechnology, vol. 39, no. 3, pp. 137-42, 2011.
  • S. Jin, Y. Zhang, Q. Wang, D. Zhang, S. Zhang, "Influence of TiN coating on the biocompatibility of medical NiTi alloy," Colloids and Surfaces B: Biointerfaces, vol. 101, no., pp. 343-9, 2013.
  • P. Dong, W. Hao, X. Wang, T. Wang, "Fabrication and biocompatibility of polyethyleneimine/heparin self-assembly coating on NiTi alloy," Thin Solid Films, vol. 516, no. 16, pp. 5168-71, 2008.
  • T. Sun, L.-P. Wang, M. Wang, H.-W. Tong, W. W. Lu, "PIIID-formed (Ti, O)/Ti,(Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications," Materials Science and Engineering: C, vol. 32, no. 6, pp. 1469-79, 2012.
Birincil Dil en
Konular Metalürji Mühendisliği, İmalat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Orcid: 0000-0003-1167-3799
Yazar: Ibrahim Nazem QADER (Sorumlu Yazar)
Kurum: University of Raparin
Ülke: Iraq


Orcid: 0000-0001-7404-4311
Yazar: Mediha KÖK
Kurum: FIRAT ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-9849-590X
Yazar: Fethi DAĞDELEN
Kurum: FIRAT ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-6468-3793
Yazar: Shakhawan Salih ABDULLAH
Kurum: Erbil Polytechnic University
Ülke: Turkey


Destekleyen Kurum Firat University
Tarihler

Başvuru Tarihi : 7 Mayıs 2020
Kabul Tarihi : 3 Temmuz 2020
Yayımlanma Tarihi : 1 Ekim 2020

Bibtex @araştırma makalesi { saufenbilder733645, journal = {Sakarya University Journal of Science}, issn = {}, eissn = {2147-835X}, address = {}, publisher = {Sakarya Üniversitesi}, year = {2020}, volume = {24}, pages = {892 - 913}, doi = {10.16984/saufenbilder.733645}, title = {The Effect of Different Parameters on Shape Memory Alloys}, key = {cite}, author = {Qader, Ibrahim Nazem and Kök, Mediha and Dağdelen, Fethi and Abdullah, Shakhawan Salih} }
APA Qader, I , Kök, M , Dağdelen, F , Abdullah, S . (2020). The Effect of Different Parameters on Shape Memory Alloys . Sakarya University Journal of Science , 24 (5) , 892-913 . DOI: 10.16984/saufenbilder.733645
MLA Qader, I , Kök, M , Dağdelen, F , Abdullah, S . "The Effect of Different Parameters on Shape Memory Alloys" . Sakarya University Journal of Science 24 (2020 ): 892-913 <http://www.saujs.sakarya.edu.tr/tr/pub/issue/56422/733645>
Chicago Qader, I , Kök, M , Dağdelen, F , Abdullah, S . "The Effect of Different Parameters on Shape Memory Alloys". Sakarya University Journal of Science 24 (2020 ): 892-913
RIS TY - JOUR T1 - The Effect of Different Parameters on Shape Memory Alloys AU - Ibrahim Nazem Qader , Mediha Kök , Fethi Dağdelen , Shakhawan Salih Abdullah Y1 - 2020 PY - 2020 N1 - doi: 10.16984/saufenbilder.733645 DO - 10.16984/saufenbilder.733645 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 892 EP - 913 VL - 24 IS - 5 SN - -2147-835X M3 - doi: 10.16984/saufenbilder.733645 UR - https://doi.org/10.16984/saufenbilder.733645 Y2 - 2020 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi The Effect of Different Parameters on Shape Memory Alloys %A Ibrahim Nazem Qader , Mediha Kök , Fethi Dağdelen , Shakhawan Salih Abdullah %T The Effect of Different Parameters on Shape Memory Alloys %D 2020 %J Sakarya University Journal of Science %P -2147-835X %V 24 %N 5 %R doi: 10.16984/saufenbilder.733645 %U 10.16984/saufenbilder.733645
ISNAD Qader, Ibrahim Nazem , Kök, Mediha , Dağdelen, Fethi , Abdullah, Shakhawan Salih . "The Effect of Different Parameters on Shape Memory Alloys". Sakarya University Journal of Science 24 / 5 (Ekim 2020): 892-913 . https://doi.org/10.16984/saufenbilder.733645
AMA Qader I , Kök M , Dağdelen F , Abdullah S . The Effect of Different Parameters on Shape Memory Alloys. SAUJS. 2020; 24(5): 892-913.
Vancouver Qader I , Kök M , Dağdelen F , Abdullah S . The Effect of Different Parameters on Shape Memory Alloys. Sakarya University Journal of Science. 2020; 24(5): 892-913.
IEEE I. Qader , M. Kök , F. Dağdelen ve S. Abdullah , "The Effect of Different Parameters on Shape Memory Alloys", Sakarya University Journal of Science, c. 24, sayı. 5, ss. 892-913, Eki. 2020, doi:10.16984/saufenbilder.733645