Yıl 2016, Cilt 20 , Sayı 3, Sayfalar 659 - 665 2016-10-11

Homojen Karışımlı Sıkıştırma Ateşlemeli (HCCI) bir motorun tek-bölgeli modelleme yöntemi kullanılarak analizi
Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method

Halit Yaşar [1]


HCCI motorların modellenmesinde sıfır-boyutlu modeller yaygın olarak kullanılmaktadır. Bu modeller tek veya çok bölge içerebilirler. Bununla birlikte, en basit yaklaşım yanmış ve yanmamış gazı içeren tek bölge yaklaşımıdır. Bu tip sıfır-boyutlu modellerde yanma olayı Wiebe fonksiyonu ile modellenmektedir. Bu makalede, HCCI prensibine göre çalışan tek silindirli bir Ricardo Hydra motoru tek bölge yaklaşımı kullanılarak modellenmiştir. Analiz çalışmalarında SPICE (Simulated Petrol Internal Combustion Engine) yazılımının modifiye edilmiş bir versiyonu olan TRICE yazılımı kullanılmıştır. Yanma analizlerinde,    HCCI yanma modellerinde standart Wiebe fonksiyonu kullanımının maksimum silindir basıncının yüksek olarak tahmin edilmesi sonucunu doğurması nedeniyle, standart Wiebe   fonksiyonunun  modifiye  edilmiş  bir   şekli  olan  Double-Wiebe fonksiyonu  kullanılmıştır. Analizler,  n-Heptan-Toluen karışımı için üç hava fazlalık katsayısı değerinde gerçekleştirilmiş ve elde edilen sonuçlar bir Avrupa Komisyonu Marie Curie destek programı (FP-6) projesi kapsamında Shell Araştırma Merkezine ait motor test laboratuvarında ölçülen deneysel verilerle karşılaştırılmıştır.

Zero-dimensional models are commonly used to model HCCI engines. These models may contain single or multi zones. However, the simplest approach is the single-zone containing burned and unburned gases. In these type models, combustion progress is modelled by Wiebe function. In this article, a single-cylinder Ricardo Hydra engine, which is running in HCCI mode,  was modelled by using single-zone method. In the analysis, a modified Shell SI engine code called TRICE was used. This code is a modified version of SPICE (Simulated Petrol Internal Combustion Engine) and modified for HCCI engine. In the combustion analysis, a modified Wiebe function called double-Wiebe function was used since standard Wiebe-function tends to over-predict the peak cylinder pressure in HCCI combustion models.   The analses were performed for n-Heptane-Toluene blend with three excess air ratios and the results were compared to the experimental data measured in the engine test laboratuary of Shell Research Centre within an European Commission Marie Curie Transfer of Knowledge Scheme (FP6) project.

  • N. Mina, M. Kanehara, N. Lida, Assessment for innovative combustion on HCCI engine by controlling EGR ratio and engine speed, Applied Thermal Engineering, Volume 99, 25 April 2016, Pages 42-60.
  • S. Gowthaman, A.P. Sathiyagnanam, Effects of charge temperature and fuel injection pressure on HCCI engine, Alexandria Engineering Journal, Volume 55, Issue 1, March 2016, Pages 119-125.
  • Y. Yang, J. E. Dec, M. Sjöberg, C. Ji, Understanding fuel anti-knock performances in modern SI engines using fundamental HCCI experiments, Combustion and Flame, Volume 162, Issue 10, October 2015, Pages 4008-4015.
  • J. Chen, B. Liu, X. Gao, D. Xu, Experimental and numerical investigation of hetero-/homogeneous combustion-based HCCI of methane–air mixtures in free-piston micro-engines, Energy Conversion and Management, Volume 119, 1 July 2016, Pages 227-238.
  • X. Zhen, Y. Wang, Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics, Energy Conversion and Management, Volume 96, 15 May 2015, Pages 188-196.
  • A. Yousefi, A. Gharehghani, M. Birouk, Comparison study on combustion characteristics and emissions of a homogeneous charge compression ignition (HCCI) enginewith and without pre-combustion chamber, Energy Conversion and Management, Volume 100, August 2015, Pages 232-241.
  • T. Karthikeya Sharma, G. Amba Prasad Rao, K. Madhu Murthy, Effective reduction of NOx emissions of a HCCI (Homogeneous charge compression ignition) engine by enhanced rate of heat transfer under varying conditions of operation, Energy, Volume 93, Part 2, 15 December 2015, Pages 2102-2115
  • S.M. Aceves, D.L. Flowers, F. Espincisco-Loza, A. Babajimopoulos, D.N. Assanis, Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model, SAE paper 2005-01-0115.
  • M. Sjober, J. Dec, N.P. Cernansky, Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments, SAE paper 2005-01-0113.
  • M. Konno, Z. Chen, Ignition Mechanisms of HCCI Combustion Process Fueled with Methane/DME Composite Fuel, SAE paper 2005-01-0182.
  • J. Chang, O. Guralp, Z. Filipi, D. Assanis, New Heat Transfer Correlation for An HCCI Engine Derived From Measurements of Instantaneous Surface Heat Flux, SAE paper 2004-01-2996.
  • J. Bengtsson, P. Strandh, R. Johansson, P. Tunestål, B. Johansson, Closed-Loop Combustion Control of Homogeneous Charge Compression Ignition (HCCI) Engine Dynamics, International Journal of Adaptive Control and Signal Processing, 18 , pp. 167-179, 2004.
  • H.S. Soyhan, T. Lovas, F. Mauss, A stochastic simulation of an HCCI engine using an automatically reduced mechanism, ASME Paper No: 2001-ICE-416, 2001; 37-2: 83-96.
  • D. L. Flowers, S. M. Aceves, J. R. Smith, J. Torres, J. Girard, R. W. Dibble, HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling, SAE Paper 2000-01-0328.
  • M. A. Salvador, D. L. Flowers, K. C. Westbrook, J. R. Smith, R. W. Dibble, M. Christensen, W. J. Pitz, B. Johansson, A Multi-Zone Model for Prediction of HCCI Combustion and Emissions, SAE Paper 2000-01-0327.
  • M. Canova, S. Midlam-Mohler, Y. Guezennec, G. Rizzoni, Theoretical and experimental investigation on diesel HCCI combustion with external mixture formation, Int. J. of Vehicle Design, 2007; 44: No.1/2, 62 - 83.
  • M. Y. Kim, C. S. Lee, Effect of a narrow fuel spray angle and a dual injection configuration on the improvement of exhaust emissions in a HCCI diesel engine, Fuel, in press, available online 9 April 2007.
  • D. S. Kim, C. S. Lee, Improved emission characteristics of HCCI engine by various premixed fuels and cooled EGR, Fuel, 2006; 85: 5-6, 695-704.
  • L. Shi, Y. Cui, K. Deng, H. Peng, Y. Chen, Study of low emission homogeneous charge compression ignition (HCCI) engine using combined internal and external exhaust gas recirculation (EGR), Energy, 2006; 31: 14, 2665-2676.
  • L. Xingcai, C. Wei, H. Zhen, A fundamental study on the control of the HCCI combustion and emissions by fuel design concept combined with controllable EGR. Part 1. The basic characteristics of HCCI combustion, Fuel, 2005; 84: 1074–1083.
  • D.S. Kim, M.Y. Kim, C.S. Lee, Combustion and emission characteristics of partial homogeneous charge compression ignition engine, Combustion Science and Technology, 2005; 177: 107–125.
  • S. Onishi, J. S. Hong, K. Shoda, J. P. Do, S. Kato, Active Thermo-Atmosphere Combustion (ATAC) - A New Combustion Process for Internal Combustion Engines, SAE Paper 790501.
  • M. Noguchi, Y. Tanaka, , T. Tanaka, Y. Takeuchi, A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion, SAE paper 790840.
  • P. Sharma, A. Dhar, Development of chemical kinetics based hydrogen HCCI combustion model for parametric investigation, International Journal of Hydrogen Energy, Volume 41, Issue 14, 20 April 2016, Pages 6148-6154.
  • G. Barari, S. M. Sarathy, S. S. Vasu, Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition, Fuel, Volume 164, 15 January 2016, Pages 141-150.
  • M. D. Firoozabadi, M. Shahbakhti, C.R. Koch, S.A. Jazayeri, Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine, Applied Energy, Volume 110, October 2013, Pages 236-243.
  • H. Barths, C. Felsch, N. Peters, Mixing models for the two-way-coupling of CFD codes and zero-dimensional multi-zone codes to model HCCIcombustion, Combustion and Flame, Volume 156, Issue 1, January 2009, Pages 130-139.
  • H. Yasar, H.S. Soyhan, H. Walmsley, B. Head, C. Sorusbay, Double-Wiebe function: An approach for single-zone HCCI engine modeling, Applied Thermal Engineering, Volume 28, Issues 11–12, August 2008, Pages 1284-1290.
  • H.S. Soyhan, H. Yasar, H. Walmsley, B. Head, G.T. Kalghatgi, C. Sorusbay, Evaluation of heat transfer correlations for HCCI engine modeling, Applied Thermal Engineering, Volume 29, Issues 2–3, February 2009, Pages 541-549.
  • M. Klein, L. Eriksson, A Specific Heat Ratio Model for Single-Zone Heat Release Models, 2004; SAE 2004-01-1464.
  • C. Elmqvist, F. Lindström, H. Ångström, B. Grandin, G. Kalghatgi, Optimizing Engine Concepts by Using a Simple Model for Knock Prediction, 2003; SAE 2003-01-3123.
  • G.F. Hohenberg, Advanced Approaches for Heat Transfer Calculations, SAE Paper 790825.
  • G.M. Rassweiler, L. Withrow, Motion pictures of engine flames correlated with pressure cards, SAE Transactions 47 (1938) 185–204.
Bölüm Araştırma Makalesi
Yazarlar

Yazar: Halit Yaşar

Tarihler

Başvuru Tarihi : 27 Nisan 2016
Kabul Tarihi : 17 Ekim 2019
Yayımlanma Tarihi : 11 Ekim 2016

Bibtex @ { saufenbilder270021, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {}, publisher = {Sakarya Üniversitesi}, year = {2016}, volume = {20}, pages = {659 - 665}, doi = {10.16984/saufenbilder.49792}, title = {Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method}, key = {cite}, author = {Yaşar, Halit} }
APA Yaşar, H . (2016). Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method. Sakarya University Journal of Science , 20 (3) , 659-665 . DOI: 10.16984/saufenbilder.49792
MLA Yaşar, H . "Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method". Sakarya University Journal of Science 20 (2016 ): 659-665 <http://www.saujs.sakarya.edu.tr/tr/issue/25594/270021>
Chicago Yaşar, H . "Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method". Sakarya University Journal of Science 20 (2016 ): 659-665
RIS TY - JOUR T1 - Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method AU - Halit Yaşar Y1 - 2016 PY - 2016 N1 - doi: 10.16984/saufenbilder.49792 DO - 10.16984/saufenbilder.49792 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 659 EP - 665 VL - 20 IS - 3 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.49792 UR - https://doi.org/10.16984/saufenbilder.49792 Y2 - 2019 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method %A Halit Yaşar %T Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method %D 2016 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 20 %N 3 %R doi: 10.16984/saufenbilder.49792 %U 10.16984/saufenbilder.49792
ISNAD Yaşar, Halit . "Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method". Sakarya University Journal of Science 20 / 3 (Ekim 2016): 659-665 . https://doi.org/10.16984/saufenbilder.49792
AMA Yaşar H . Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method. SAUJS. 2016; 20(3): 659-665.
Vancouver Yaşar H . Analysis of a Homogeneous Charge Compression Ignition (HCCI) engine by using a single-zone modelling method. Sakarya University Journal of Science. 2016; 20(3): 665-659.