Yıl 2016, Cilt 20 , Sayı 3, Sayfalar 509 - 519 2016-11-30

A study on drought stress tolerance in some maize (Zea mays L.) cultivars
Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma

Ali Doğru [1] , Nesrin Ecem Bayram [2]


In this study, some morphological and physiological parameters of three maize (Zea mays L.) cultivars, cv. FR13, FRB73 and TTM815, were analysed to investigate their tolerance to drought stress. Twenty-one-day old plants were subjected to three different regime of drought stress by withholding Hoagland’s nutrient solution for 2 (mild drought stress), 5 (moderate drought stress), and 8 (severe drought stress) days. Root growth in cultivars FR13 and TTM815 was significantly inhibited by moderate and severe drought stress while shoot growth in all maize cultivars was not affected under all drought treatments. Our results showed that inhibited root growth under mild and severe drought conditions was responsible for decreased total plant lenght in all cultivars although FRB73 was less affected. Fresh and dry biomass increased in all cultivars under all drought treatments, however it was more significant in FRB73. These results may indicate that water relations in FRB73 can be regulated more properly under drought stress, as indicated by relatively constant water content. “Chlorophyll a” content in FR13 and TTM815 was decreased at the end of the treatments while it was not affected in FRB73 by drought stress. “Chlorophyll b” content in FR13 and FRB73, on the other hand, was less affected by drought treatments. Malondialdehyde accumulation in all cultivars increased considerably as a result of all drought treatments, however to a less extent in FRB73. Total phenolic contents in all cultivars were increased especially by moderate and severe drought stress. Total soluble sugar contents in FR13 and TTM815 were decreased significantly by mild and severe drought stress while it remained constant in FRB73 under all drought treatments. According to our results, it may be concluded that FRB73 is more drought tolerant maize cultivar because of the ability of maintaining root and shoot growth, accumulation of phenolics, fresh and dry biomass, relatively less affected water, photosynthetic pigment (chlorophyll a and b) and sugar content and lower level of malondialdehyde under drought stress when compared to FR13 and TTM815.

Bu çalışmada üç mısır (Zea mays L.) kültivarının (FR13, FRB73, TTM815) kuraklık stresine toleranslarının araştırılması amacıyla bazı morfolojik ve fizyolojik parametreler analiz edilmiştir. Yirmi bir günlük bitkilere, Hoagland besin çözeltisi uygulaması sonlandırılarak 2 (hafif kuraklık stresi), 5 (orta dereceli kuraklık stresi) ve 8 (şiddetli kuraklık stresi) gün olmak üzere üç farklı kuraklık rejimi uygulanmıştır. FR13 ve TTM815 kültivarlarında orta dereceli ve şiddetli kuraklık stresi kök büyümesini önemli derecede inhibe ederken, gövde büyümesi mısır kültivarlarında tüm kuraklık uygulamalarından etkilenmemiştir. Elde ettiğimiz sonuçlar mısır kültivarlarında hafif ve orta dereceli kuraklık stresi koşullarında toplam bitki boyundaki azalmanın, kök büyümesindeki inhibisyondan kaynaklandığını ancak FRB73’ün daha az etkilendiğini göstermiştir. Tüm kültivarlarda kuraklık uygulamaları taze ve kuru biyomasın artmasına neden olmuş fakat FRB73’de daha belirgin bir artış meydana gelmiştir. Bu sonuçlar kuraklık koşulları altında nispeten daha stabil su miktarına sahip olduğu için FRB73’deki su ilişkilerinin daha uygun şekilde regüle edildiğini göstermektedir. FR13 ve TTM815’de “klorofil a” miktarı uygulamalar sonunda azalırken, FRB73’de kuraklık stresinden etkilenmemiştir. Diğer yandan FR13 ve FRB73’de “klorofil b” içeriği kuraklık uygulamalarından daha az etkilenmiştir. Kuraklık uygulamaları sonucunda tüm kültivarlardaki malondialdehit birikimi önemli derecede artmış ancak FRB73’de daha az birikim belirlenmiştir. Toplam fenolik madde içeriği tüm kültivarlarda özellikle orta dereceli ve şiddetli kuraklık sonucunda artmıştır. FR13 ve TTM815’de toplam çözünür şeker miktarı orta dereceli ve şiddetli kuraklık uygulamaları sonucu azalırken, FRB73’de değişmemiştir. Elde ettiğimiz sonuçlara göre FRB73’ün, FR13 ve TTM815 ile karşılaştırıldığında, kuraklık stresi altında kök ve gövde büyümesini sürdürme yeteneği, fenolik madde, taze ve kuru biyomas artışı, su, fotosentetik pigment (klorofil a ve b) ve şeker miktarının daha az etkilenmesi ve malondialdehit birikiminin daha az olması nedeniyle kuraklığa daha toleranslı bir mısır kültivarı olduğu söylenebilir.

  • J. S. Boyer, “Plant productivity and environment”, Science, vol. 218, pp. 443-448, 1982.
  • E. A. Bray, J. Bailey-Serres and E. Weretilnyk, “Responses to abiotic stresses”, in Biochemistry and Molecular Biology of Plants, W. Gruissem, B. Buchanan, R. Jones, Ed. American Society of Plant Physiologists, 2000.
  • B. Valliyodan and H. T. Nguyen, “Understanding regulatory networks and engineering for enhanced drought tolerance in plants”, Curr. Op. Plant Biol., vol. 9, pp. 189-195, 2006.
  • J. B. Passioura, A. G. Condon and R. A. Richards, “Water deficits, the development of leaf area and crop productivity”, in Water Deficits. Plant Responses from Cell to Community, J. A. C. Smith, E. Griffiths, BIOS Scientific Publications, Oxford, 1993.
  • A. Blum and A. Ebercon, “Cell membrane stability as a measure of drought and heat tolerance in wheat”, Crop Sci., vol 21, pp. 43-47, 1981.
  • N. Trapani and E. Gentinetta, “Screening of maize genotypes using drought tolerance tests”, Maydica, vol. 29, pp. 89-100, 1984.
  • P. Martiniello and C. Lorenzoni, “Response of maize genotypes to drought tolerance tests”, Maydica, vol. 30, pp. 361-370, 1985.
  • J. P. Palta, “Stress interactions at the cellular and membrane level”, HortSci., vol. 25, pp. 1337-1381, 1990.
  • S. Grzesiak, “Genotypic variation between maize (Zea mays L.) single cross hybrids in response to drought stress”, Acta Physiol. Plant., vol. 23, pp. 443-456, 2001.
  • A. L. S. Lima, F. M. DaMatta, H. A. Pinheiro, M. R. Totola and M. E. Loureiro, “Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit condition”, Environ. Exp. Bot., vol. 47, pp. 239-247, 2002.
  • J. E. Muller and M. S. Whitshitt, “Plant cellular responses to water deficit”, Plant Growt. Regul., vol. 20, pp. 41-46, 1996.
  • L. Taiz and S. C. E. Zeiger, “Plant Physiology”, University of California, Los Angeles, Sinauer Associates, Inc., Publisher, pp. 726-735, 1998.
  • C. H. Foyer and G. Noctor, “Redox haemostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses”, Plant Cell, vol. 17, pp. 1866-1875, 2005.
  • M. K. Nikolaeva, S. N. Maevskaya, A. G. Shugaev and N. G. Bukhov, “Effects of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity”, Russ. J. Plant Physiol., vol. 57, no 1, pp. 87-95, 2010.
  • B. Halliwell, “Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts”, Chem. Phys. Lipids, vol. 44, pp. 327-340, 1987.
  • R. G. Alscher, J. L. Donahue and C. L. Cramer, “Reactive oxygen species and antioxidants: Relationships in green cells”, Physiol. Plant. vol. 100, pp. 224-233, 1997.
  • C. Bowler, M. V. Montagu and D. Inze, “Superoxide dismutase and stress tolerance”, Annu. Rev. Plant. Physiol. Plant Mol. Biol., vol. 43, pp. 83-116, 1992.
  • M. Bor, F. Özdemir and İ. Türkan, “The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L and wild beet Beta maritima L.”, Plant Sci., vol. 164, pp. 77-84, 2003.
  • W. Bilger, T. Johnsen and U. Schreiber, “UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants”, J. Exp. Bot., vol. 52, pp. 2007-2014, 2001.
  • O. Blokhina, E. Virolainen and K. V. Fagerstedt, “Antioxidants, oxidative damage and oxygen deprivation stress: a review”, Ann. Bot., vol. 91, pp. 179-194, 2002.
  • T. H. H. Chen and N. Murata “Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes”, Curr. Opin. Plant Biol., vol. 5, pp. 250-257, 2002.
  • G. A. Gilbert, C. Wilson and M. A. Madore, “Root zone salinity alters raffinose oligosaccharide metabolism and transport in Coleus”, Plant Physiol., vol. 115, pp. 1267-1276, 1997.
  • S. Pelleschi, J. P. Rocher and J. L. Prioul, “Effect of water restriction on carbohydrate metabolism and photosynthesis in mature maize leaves”, Plant Cell Environ., vol 20, no 4, pp. 493-503, 1997.
  • J. Y. Kim, A. Mahe, J. Brangeon and J. L. Prioul, “A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression”, Plant Physiol., vol. 124, pp. 71–84, 2000.
  • I. Couee, C. Sulmon, G. Gouesbet and A. El Amrani, “Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants”, J. Exp. Bot., vol. 57, no 3, pp. 449-459, 2006.
  • Y. Gibon, M. A. Bessieres and F. Larher, “Is glycine betaine a non-compatible solute in higher plants that do not accumulate it?”, Plant, Cell Environ., vol. 20, pp. 329-340, 1997.
  • H. K. Lichtenthaler, “Chlorophylls and carotenoids: Pigments of photosynthetic bio membranes”, Methods Enzymol., vol. 148, pp. 350-382, 1987.
  • H. Ohkawa, N. Ohishi and Y. Yagi, “Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction”, Anal. Biochem., vol. 95, pp. 351-358, 1979.
  • S. F. Chandler and J. H. Dodds, “The effect of phosphate nitrogen and sucrose on the production of phenolics and socosidine in callus cultures of Solanum laciniatum”, Plant Cell Rep., vol. 2, pp. 105-108, 1983.
  • M. Dubois, K. A. Gilles, K. J. Hamilton, P. A. Rebers and F. Smith, “Colorimetric method for determination of sugars and related substances”, Anal. Chem., vol. 28, pp. 350-356, 1956.
  • M. Ashraf and M. R. Foolad, “Roles of glycine betaine and proline in improving plant abiotic stress resistance”, Environ. Exp. Bot., vol. 59, pp. 206-212, 2007.
  • M. Farooq, A. Wahid, N. Kobayashi, D. Fujita and S. M. A. Basra, “Plant drought stress: effects, mechanisms and management”, Agron. Sustain. Dev, vol. 29, pp. 185-212, 2009.
  • A. J. Bot, F. O. Nachtergaele and A. Young, “Land resource potential and constraints at regional and country levels”, Wold Soil Res. Rep., 90, in Land and Water Development Division, FAO, Rome, 2000.
  • M. R. Foolad, P. Subbiah, C. Kramer, G. Hargrave and G. Y. Lin, “Genetic relationships among cold, salt and drought tolerance during seed germination in an interspecific cross of tomato” Euphytica, vol. 130, pp. 199-206, 2003.
  • M. Ashraf and P. J. Harris, “Potential biochemical indicators of salinity tolerance in plants”, Plant Sci., vol. 166, pp. 3-16, 2004.
  • M. Kusaka, M. Ohta and T. Fujimura, “Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet”, Physiol. Plant., vol. 125, pp. 474-489, 2005.
  • H. B. Shao, L. Y. Chu, M. A. Shao, C. Abdul Jaleel and M. Hong-Mei, “Higher plant antioxidants and redox signalling under environmental stresses”, Comp. Rend. Biol., vol. 331, pp. 433-441, 2008.
  • M. Kusaka, A. N. Lalusin and T. Fujimura, “The maintenance of growth and turgor in pearl millet (Pennisetum glaucum L. Leeke) cultivars with different root structures and osmo-regulation under drought stress”, Plant Sci., vol. 168, pp. 1-14, 2005.
  • R. E. Sharp, W. K. Silk and T. C. Hsiao, “Growth of the maize primary root at low water potentials”, Plant Physiol., vol. 87, pp. 50-57, 1988.
  • T. I. Baskin, H. T. H. M. Meekes, B. M. Liang and R. E. Sharp,” Regulation of growth anisotropy in well-watered and water-stressed maize roots. II. Role of cortical microtubules and cellulose micro fibrils”, Plant Physiol., vol. 119, pp. 681-692, 1999.
  • H. Wang, J. Siopongco, L. J. Wade and A. Yamaguchi, “Fractal analysis on root systems of rice plants in response to drought stress”, Env. Exp. Bot., vol. 65, pp. 338-344, 2009.
  • H. Kage, M. Kochler and H. Stützel, “Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation”, Eur. J. Agron., vol. 20, pp. 379-395, 2004.
  • A. Blum, “Osmotic adjustment and growth of barley genotypes under drought stress”, Crop Sci., vol. 29, pp. 230-233, 1989.
  • C. Yin, X. Wang, B. Duan, J. Luo and C. Li, “Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress”, Env. Exp. Bot., vol. 53, pp. 315-322, 2005.
  • G. S. Premachandra, H. Saneoka, K. Fujita and S. Ogata, “Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum”, J. Exp. Bot., vol. 43, pp. 1569-1576, 1992.
  • P. R. Wright, J. M. Morgan and R. S. Jessop, “Comparative adaptation of canola (Brassica napus) and Indian mustard (B. juncea) to soil water deficits: plant water relations and growth”, Field Crops Res., vol. 49, pp. 51-64, 1996.
  • F. Liu and H. Stutzel, “Leaf water relations of vegetable amaranth (Amaranthus ssp.) in response to soil drying”, Eur. J. Agron., vol. 16, pp. 137-150, 2002.
  • C. I. Ogbonnaya, B. Sarr, C. Brou, O. Diouf, N. N. Diop and H. Roy-Macauley, “Selection of cowpea genotypes in hydroponics, pots and field for drought tolerance”, Crop Sci., vol. 43, pp. 1114-1120, 2003.
  • İ. Türkan, M. Bor, F. Özdemir and H. Koca, “Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress”, Plant Sci., vol. 168, pp. 223-231, 2005.
  • C. A. Jaleel, P. Mannivannan, A. Wahid, M. Farooq, H. J. Al-Juburi, R. Somasundaram and R. P. Vam, “Drought stress in plants: A review on morphological characteristics and pigments composition”, Int. J. Agric. Biol., vol. 11, pp. 100-105, 2009.
  • M. F. Quartacci, C. Pinzino, C. L. M. Sgherri and F. Navarri-Izzo, “Lipid composition and protein dynamics in thylakoids of two wheat cultivars differently sensitive to drought”, Plant Physiol., vol. 108, pp. 191-197, 1995.
  • D. S. Selote and R. Khanna-Chopra, “Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defence at cellular and subcellular level in leaves of wheat seedlings”, Physiol. Plant., vol. 127, pp. 494-506, 2006.
  • S. Y. Hsu, Y. T. Hsu and C. H. Kao, “The effect of polyethylene glycol on proline accumulation in rice leaves”., Biol. Plant., vol. 46, pp. 73–78, 2003.
  • D. W. Lawlor and G. Cornic, “Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants”, Plant Cell Environ., vol. 25, pp. 275-294, 2002.
  • A. R. Reddy, K. V. Chaitanya and M. Vivekanandan, “Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants”, J. Plant Physiol., vol. 161, pp. 1189-1202, 2004.
  • I. G. Shmat’ko and O. E. Shvedova, “Vodnyi rezhim i zasukhoustoichivost’ pshenitsy (Water regime and wheat drought tolerance)”, Kiev: Naukova Dumka, 1977.
  • T. E. Kraus, B. D. McKersie and R. A. Fletcher, “Paclobutrazole induced tolerance of wheat leaves to paraquat may involve antioxidant enzyme activities”, J. Plant Physiol., vol. 145, pp. 570-576, 1995.
  • G. M. Pastori and V. S. Trippi, “Oxidative stress induced high rate of glutathione reductase synthesis in a drought resistant maize strain”, Plant Cell Physiol., vol. 33, pp. 957-961, 1992.
  • A. K. Parida, A. B. Das, Y. Sanada and Y. Mohanty, “Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum”, Aquat. Bot., vol. 80, pp. 77-87, 2004.
  • M. El-Tayeb, “Differential responses of pigments, lipid per-oxidation, organic solutes, catalase, and per-oxidase activity in the leaves of two Vicia faba L. cultivars to drought”, Int. J. Agric. Biol., vol 8, no 1, pp. 116-122, 2006.
  • H. H. Ratnayaka, W. T. Molin and T. M. Sterling, “Physiological and antioxidant responses of cotton and spurred anoda under interference and mild drought”, J. Exp. Bot., vol. 54, pp. 2293-2305, 2003.
  • R. K. Sairam and G. C. Srivastava, “Water stress tolerance of wheat (Triticum aestivum L.): Variation in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes”, J. Agron. Crop Sci., vol. 186, pp. 63-70, 2001.
  • E. Sanchez-Rodriguez, M. Rubio-Wilhelmi, L. M. Cervilla, B. Blasco, J. J. Rios, M. A. Rosales, L. Romero and J. M. Ruiz, “Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants”, Plant Sci., vol. 178, pp. 30-40, 2010.
  • A. M. Mayer and E. Harel, “Phenol oxidases and their significance in fruit and vegetables”, Food Enzyme, vol. 32, pp. 373-398, 1991.
  • P. Agastian, S. J. Kingsley and M. Vivekanandan, “Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes”, Photosynthetica, vol. 38, pp. 287-290, 2000.
  • M. Muthukumarasamy, S. D. Gupta and R. Pannerselvam, “Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus”, Biol. Plant., vol. 43, pp. 317-320, 2000.
  • R. A. Dixon, A. D. Choudhary and D. Dalkin, “Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa”, in Phenolic metabolism in plants, H. A. Stafford, R. K. Ibrahim, Ed. New York, Plenum Press, 1992, pp. 91-138.
  • R. M. Rivero, J. M. Ruiz, P. C. Garcia, L. R. Lopez-Lefebre, E. Sanchez and L. Romerao, “Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants”, Plant Sci., vol. 160, pp. 315-321, 2001.
  • A. K. Parida, V. S. Dagaonkar, M. S. Phalak, G. V. Umalkar and L. P. Aurangabadkar, “Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery”, Plant Biotechnol. Rep., vol. 1, pp. 37-48, 2007.
  • T. Hura, S. Grzesiak, K. Hura, E. Thiemt, K. Tokarz and M. Wedzony, “Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: accumulation of ferulic acid correlates with drought tolerance”, Ann. Bot., vol. 100, pp. 767-775, 2007.
  • F. J. Sanchez, E. F. de Andres, J. L. Tenorio and L. Ayerbe, “Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress”, Field Crop Res., vol. 86, pp. 81-90, 2004.
  • J. P. Martinez, S. Lutts, A. Schanck, M. Bajji and J. M. Kint, “Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.?”, Plant Sci., vol. 161, pp. 1041-1051, 2004.
  • L. E. Abdel-Nasser and A. E. Abdel-Aal, “Effect of elevated CO2 and drought on proline metabolism and growth of safflower (Carthamus maeroticus L.) seedlings without improving water status”, Pak. J. Biol. Sci., vol. 5, pp. 523-528, 2002.
  • I. Kerepesi and G. Galiba, “Osmotic and salt-stress induced alteration in soluble carbohydrate content in wheat seedlings”, Crop Sci., vol. 40, pp. 482-487, 2000.
  • A. D. Hanson and W. D. Hitz, “Metabolic responses of plant water deficit”, Annu. Rev. Plant. Physiol., vol. 33, pp. 163-203, 1982.
  • J. M. Morgan, “Osmotic components and properties associated with genotypic differences in osmoregulation in wheat”, Aust. J. Plant Physiol., vol. 19, pp. 67-76, 1992.
Konular Mühendislik
Yayımlanma Tarihi Aralık 2016
Bölüm Araştırma Makalesi
Yazarlar

Yazar: Ali Doğru

Yazar: Nesrin Ecem Bayram

Tarihler

Başvuru Tarihi : 20 Nisan 2016
Kabul Tarihi : 25 Temmuz 2016
Yayımlanma Tarihi : 30 Kasım 2016

Bibtex @araştırma makalesi { saufenbilder270008, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {}, publisher = {Sakarya Üniversitesi}, year = {2016}, volume = {20}, pages = {509 - 519}, doi = {10.16984/saufenbilder.25673}, title = {Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma}, key = {cite}, author = {Doğru, Ali and Ecem Bayram, Nesrin} }
APA Doğru, A , Ecem Bayram, N . (2016). Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma. Sakarya University Journal of Science , 20 (3) , 509-519 . DOI: 10.16984/saufenbilder.25673
MLA Doğru, A , Ecem Bayram, N . "Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma". Sakarya University Journal of Science 20 (2016 ): 509-519 <http://www.saujs.sakarya.edu.tr/tr/issue/25594/270008>
Chicago Doğru, A , Ecem Bayram, N . "Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma". Sakarya University Journal of Science 20 (2016 ): 509-519
RIS TY - JOUR T1 - Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma AU - Ali Doğru , Nesrin Ecem Bayram Y1 - 2016 PY - 2016 N1 - doi: 10.16984/saufenbilder.25673 DO - 10.16984/saufenbilder.25673 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 509 EP - 519 VL - 20 IS - 3 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.25673 UR - https://doi.org/10.16984/saufenbilder.25673 Y2 - 2016 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma %A Ali Doğru , Nesrin Ecem Bayram %T Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma %D 2016 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 20 %N 3 %R doi: 10.16984/saufenbilder.25673 %U 10.16984/saufenbilder.25673
ISNAD Doğru, Ali , Ecem Bayram, Nesrin . "Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma". Sakarya University Journal of Science 20 / 3 (Kasım 2016): 509-519 . https://doi.org/10.16984/saufenbilder.25673
AMA Doğru A , Ecem Bayram N . Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma. SAUJS. 2016; 20(3): 509-519.
Vancouver Doğru A , Ecem Bayram N . Bazı mısır (Zea mays L.) kültivarlarında kuraklık stresi toleransı üzerine bir çalışma. Sakarya University Journal of Science. 2016; 20(3): 519-509.