Title: Process Model Development of Lithium-ion Batteries — An Electrochemical Impedance Spectroscopy Simulation

Authors: Salim EROL
Recieved: 2020-07-07 12:16:16
Accepted: 2020-09-08 15:38:37
Article Type: Research Article
Volume: 24
Issue: 6
Month: December
Year: 2020
Pages: 1191-1197

How to cite
Salim EROL; (2020), Process Model Development of Lithium-ion Batteries — An Electrochemical Impedance Spectroscopy Simulation. Sakarya University Journal of Science, 24(6), 1191-1197, DOI: https://doi.org/10.16984/saufenbilder.765554
Access link

New submission to SAUJS
Process Model Development of Lithium-ion Batteries — An Electrochemical Impedance Spectroscopy Simulation

Salim EROL*1

Abstract

In this study, a simulation of an electrochemical impedance spectroscopy for lithium-ion batteries was proposed. The electrochemical process was developed from battery electrode kinetics and mass transfer of mobile Li\(^+\) ions through negative and positive electrodes and electrolyte. The phenomena used in this process were represented by an equivalent electrical circuit. A mathematical model was designed using the equivalent circuit and its elements which are in fact battery parameters. The parameter values were presented as compared with real experimental impedance result. The results showed that the simulation and process development were in good agreement with the experimental data.

Keywords: Li-ion battery, impedance spectroscopy, equivalent electrical circuit, porous electrode, solid electrolyte interphase

1. INTRODUCTION

Electrochemical impedance spectroscopy (EIS) is a broadly used noninvasive technique for variety of systems including batteries [1-5], fuel cells [6-9], corrosion detecting [10-14], biosensors [15-19], and so on [20].

Typical representation of EIS of an electrochemical system is complex Nyquist diagram. The Nyquist plot a Li-ion battery shown in Figure 1 can be divided into two regions of high frequency and low frequency. The high frequency region is between points corresponding to 100 kHz and 0.5 Hz. The low frequency region is between points corresponding to 0.5 Hz and 20 mHz. Initial examination of the Nyquist plot the following points can be attested as:

1. The high frequency zone corresponds to the interfacial charge transfer kinetics on electrodes.
2. The low frequency zone corresponds that of a diffusion process in a solid phase.

* Corresponding Author: esalim@ogu.edu.tr
1 Eskişehir Osmangazi University, ORCID: https://orcid.org/0000-0002-7219-6642
The objective of the study is to represent a new simulation approach along with a realistic process development for an EIS of the Li-ion batteries.

2. PROCESS DEVELOPMENT

Two prominent theories explain the process of a Li-ion battery. The theory by Doyle et al. [22,23], describes the battery process as given in Figure 1. The battery is considered to include a porous negative electrode, a separator, and a porous positive electrode. \(\text{Li}^+ \) ions from the positive electrode are released, travel through the electrolyte in the separator region, and are then intercalated into the negative electrode. The following processes may be considered to take place:

1. The de-intercalation reaction of the \(\text{Li}^+ \) ions in the porous positive electrode.
2. The diffusion of \(\text{Li}^+ \) ions in the solid phase of positive electrode.
3. Transport of solution in the porous electrode in the positive electrode.
4. Transport of \(\text{Li}^+ \) ions through the electrolyte in separator region.
5. Transport of solution in porous electrode in the negative electrode.
6. Diffusion of \(\text{Li}^+ \) ions in the solid phase in the negative electrode.
7. Intercalation reaction of the \(\text{Li}^+ \) ions in the porous negative electrode.

Along with the above processes, charging of the double layer takes place at both the electrodes. In the analysis charging and Faradaic currents are assumed to be separable, side reactions at the electrode-electrolyte interface are neglected, and Butler-Volmer kinetics are assumed to apply for the reactions at both electrodes. For a single reversible electrochemical reaction, the Butler-Volmer equation is expressed as

\[
i = i_0 \left(\frac{1 - \alpha n F}{RT} \eta_s \right) - \exp \left(- \frac{\alpha n F}{RT} \eta_s \right)
\]

where \(i \) is the current density, \(i_0 \) is called the exchange current density which is the current at zero surface overpotential, \(\eta_s \) is the surface overpotential representing the departure from an equilibrium potential, \(\alpha \) is called symmetry factor which is the fraction of the surface overpotential that is with respect to the cathodic reaction, \(n \) is the number of electrons transferred through the electrodes, \(F \) is the Faraday’s constant, \(R \) is the universal gas constant, and \(T \) is absolute temperature [24].

Doyle et al. [22,23] used a set of equations for the above process and, solving those equations with specific set of conditions, established various parameter relations which enabled them to simulate the impedance spectra and compare it with those of experimental spectra. The complete analysis of the impedance spectra by Doyle et al. enabled them to distinguish the various factors of the battery by separating the terms of the equations which symbolized different processes of the battery. The analysis revealed that the high frequency region of the impedance spectra was mainly due to the interfacial kinetic resistance contributed primarily by the intercalation reaction. It also depended on the depth of discharge of the \(\text{Li}^+ \) ions. The charge transfer resistance of the de-intercalation reaction is a primary contributor when the depth of discharge was >80% or <20%. The low-frequency region was attributed to the diffusion impedance in the solution phase and the solid phase and to the capacitive double layers at the interface. The summation of all the above regions gave impedance spectra similar to that of the low frequency region.

The other theory, as represented by Aurbach [25], considers a different lithiated graphite electrode structure. This theory places more importance to the reactions at the electrode-electrolyte interface. These reactions lead to the development of an additional film at the interface called the solid electrolyte interphase (SEI). This film also
explains the rise in impedance response on cycling of the cell due to continuous formation of additional film during the operation of the battery. The model envisions transport of Li\(^+\) ions through different phases of the film and the final assimilation of Li\(^+\) ions in the negative electrode. Unlike the process described by Doyle et al., interfacial kinetics in the porous electrode is not considered. Instead, diffusion of the Li\(^+\) ions is assumed to occur in the electrode until they reach their final destination. This leads to development of capacitance inside the electrode. Also films on the surface provide different phases; hence, they too contribute to capacitance.

3. MATHEMATICAL MODEL

According to the model that was developed considering the two theories described above, the stages of the battery process are assumed to include:

1. The formation of an SEI due to Li\(^+\) ions reductive strength on the electrode surface,
2. The de-intercalation of Li\(^+\) ions from the positive electrode,
3. Diffusion of Li\(^+\) ions in the solid phase,
4. Transport of solution through the porous electrode and then across the SEI, and
5. Diffusion of Li\(^+\) ions through the electrolyte in the separator.

\[
Z = Z_1 + R_e + Z_2
\]
(2)

where \(R_e\) is the ohmic resistance or the electrolyte resistance; \(Z_1\) and \(Z_2\) are the impedances of corresponding to the negative and positive electrodes, respectively. They are expressed as:

\[
Z_1 = \frac{R_{t1} + Z_d}{1 + j\omega (R_{t1} + Z_d)C_{d,1}} + \frac{R_{t1}}{1 + j\omega R_{t1}C_{t1}}
\]
(3)

and

\[
Z_2 = \frac{R_{t2}}{1 + j\omega R_{t2}C_{t2}} + \frac{R_{t2} + Z_d}{1 + j\omega (R_{t2} + Z_d)C_{d,2}}
\]
(4)

where \(R_t\) refers to the SEI film resistances, \(R_t\) refers to the charge transfer resistances for the electrode reactions which are intercalation and de-intercalation processes, \(C_t\) refers to capacitance representing SEI layer, \(C_{d}\) is the double layer capacitance on the electrode surfaces, and \(Z_d\) is the diffusion impedance occurring in both negative and positive electrodes and expressed as:

\[
Z_d(\omega) = Z_d(0) \frac{\coth(\sqrt{|R|})}{\sqrt{|R|}}
\]
(5)

where \(Z_d(0)\) refers to the diffusion impedance corresponding to the zero frequency (\(f = 0\)), and \(K\) is the dimensionless frequency given as:

\[
K = \frac{\omega \delta^2}{D_{Li^+}}
\]
(6)

where \(\delta\) is the Li\(^+\) ion diffusion layer thickness, and \(D_{Li^+}\) is the diffusivity of Li\(^+\) ions. In above Equations (2-6), \(\omega\) is the angular frequency which is equal to \(2\pi f\), and \(j\) refers to the imaginary number which is expressed as \(j^2 = -1\).

4. RESULTS AND DISCUSSION

A typical impedance simulation is presented in Figure 3 using the frequency range between 10 kHz to 10 mHz. The model parameters used to obtain this result are presented in Table 1.
The aim is to find similar impedance results for Li-ion batteries as obtained in EIS experiments.

Table 1
Model parameters used for the simulation result presented in Figure 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_e</td>
<td>$1.0 \ \Omega \ cm^2$</td>
</tr>
<tr>
<td>$R_{f,1}$</td>
<td>$0.15 \ \Omega \ cm^2$</td>
</tr>
<tr>
<td>$R_{f,2}$</td>
<td>$0.15 \ \Omega \ cm^2$</td>
</tr>
<tr>
<td>$R_{t,1}$</td>
<td>$0.20 \ \Omega \ cm^2$</td>
</tr>
<tr>
<td>$R_{t,2}$</td>
<td>$0.20 \ \Omega \ cm^2$</td>
</tr>
<tr>
<td>$C_{f,1}$</td>
<td>$3.16 \times 10^{-3} \ \text{F/cm}^2$</td>
</tr>
<tr>
<td>$C_{f,2}$</td>
<td>$1.00 \times 10^{-2} \ \text{F/cm}^2$</td>
</tr>
<tr>
<td>$C_{d,1}$</td>
<td>$3.16 \times 10^{-3} \ \text{F/cm}^2$</td>
</tr>
<tr>
<td>$C_{d,2}$</td>
<td>$1.00 \times 10^{-1} \ \text{F/cm}^2$</td>
</tr>
<tr>
<td>D_{Li^+}</td>
<td>$1.5 \times 10^{-10} \ \text{m}^2/\text{s}$</td>
</tr>
<tr>
<td>δ</td>
<td>$1.5 \times 10^{-4} \ \text{m}$</td>
</tr>
<tr>
<td>$Z_d(0)$</td>
<td>$1.5 \ \Omega \ cm^2$</td>
</tr>
</tbody>
</table>

5. CONCLUSIONS

A detailed preliminary Li-ion battery process model and its mathematical representation in terms of impedance spectroscopy were proposed in this study. Obtained parameters from the equivalent circuit initiate and boost electrochemical modeling for rechargeable batteries. An example of impedance simulation for a Li-ion battery was presented as a result here to express an equivalent circuit of passive electrical elements each representing a physical process. The results show that simulation model could be utilized for modeling Li-ion batteries. This study will give guidance for simulating and modeling not only batteries but also other types of energy storage devices.

Funding

The author received no financial support for the research, authorship, and/or publication of this paper.

The Declaration of Conflict of Interest/Common Interest

No conflict of interest or common interest has been declared by the author.
The Declaration of Ethics Committee Approval

The author declares that this document does not require an ethics committee approval or any special permission.

The Declaration of Research and Publication Ethics

The author of the paper declares that he complies with the scientific, ethical and quotation rules of SAUJS in all processes of the paper and that he does not make any falsification on the data collected. In addition, he declares that Sakarya University Journal of Science and its editorial board have no responsibility for any ethical violations that may be encountered, and that this study has not been evaluated in any academic publication environment other than Sakarya University Journal of Science.

REFERENCES

