Title: Degree Distance of Zero-Divisor Graph $\Gamma[Z_n]$

Authors: N. Feyza YALÇIN
Recieved: 2019-04-04 22:02:46
Accepted: 2020-03-30 14:31:37

Article Type: Research Article
Volume: 24
Issue: 3
Month: June
Year: 2020
Pages: 531-535

How to cite
N. Feyza YALÇIN; (2020), Degree Distance of Zero-Divisor Graph $\Gamma[Z_n]$. Sakarya University Journal of Science, 24(3), 531-535, DOI: https://doi.org/10.16984/saufenbilder.549532
Access link
http://www.saujs.sakarya.edu.tr/en/issue/52472/549532
Degree Distance of Zero-Divisor Graph $\Gamma[\mathbb{Z}_n]$

N. Feyza YALÇIN

Abstract

In this article, degree distance of zero-divisor graph $\Gamma[\mathbb{Z}_n]$ is computed for $n = p^2$, $n = pq$ and $n = p^3$, where p, q are distinct prime numbers.

Keywords: zero-divisor graph, degree distance, topological index, graph

1. INTRODUCTION

Let $G = (V(G), E(G))$ be a simple graph with $V(G)$, set of all vertices and $E(G)$, the set of all edges that join the vertices. If there is an edge joining a pair of vertices, those vertices are said to be adjacent. An edge is incident to a vertex if the edge is joined to the vertex. If $e = uv$ be an edge of the graph G, e is incident to the vertices u and v. Degree of a vertex u in a graph G is the number of edges incident to u and is denoted by $\text{deg}_G(u)$.

If there is a path between any two distinct vertices of a graph, then the graph is called connected. Length of the shortest path connecting the vertices u and v in a graph G is called distance between u and v, denoted by $d_G(u,v)$. If any two vertices of a graph is adjacent then the graph is called complete. A complete graph has n vertices is denoted by K_n. Complement graph of the complete graph K_n is \overline{K}_n, which has n vertices and no edges, namely null graph of order n. A complete bipartite graph is a graph that the set of vertices $V(G)$ can be decomposed into two disjoint subsets such that none of two vertices in the same set is not adjacent and every pair of vertices in the two sets. If these two sets have n and m vertices, then the complete bipartite graph is denoted by $K_{n,m}$.

$\text{Top}(G)$, topological index of a graph G is a real number which is invariant under isomorphism of graphs. In other words, let G be the class of all finite graphs and if $G, H \in G$ are isomorphic, then $\text{Top}(G) = \text{Top}(H)$. Topological indices are basically related to connectivity and distance in a graph. Let $G = (V(G), E(G))$ be a simple finite connected graph. In [4] degree distance of a graph G is defined as

$$D'(G) = \sum_{v \in V(G)} \text{deg}_G(v) D_G(v),$$

where $D_G(v) = \sum_{u \in V(G)} d_G(u,v)$, which is the distance of a vertex v in G. "Schultz index" name was proposed by Gutman in [5] for degree distance of a graph which can also be expressed as

*Corresponding Author: fyalcin@harran.edu.tr
1 Department of Mathematics, Harran University, 63050, Şanlıurfa, Turkey. ORCID: 0000-0001-5705-8658
Degree Distance of Zero-Divisor Graph $\Gamma[Z_n]$

In this section we give some definitions and lemmas which are required for proofs of the results will be presented.

Definition 2.1. A sum (join) of graphs G and H with disjoint vertex sets $V(G)$ and $V(H)$ is a graph has vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H) \cup \{uv: u \in V(G) \text{ and } v \in V(H)\}$. The sum of the graphs G and H is denoted by $G + H$.

Lemma 2.1. Let $G = (V(G), E(G))$ and $H = (V(H), E(H))$ be graphs. Then the following assertions are hold.

i. $|E(G + H)| = |E(G)| + |E(H)| + |V(G)||V(H)|$,

ii. $d_{G+h}(u,v) = \begin{cases} 0, & u = v \\ 1, & uv \in E(G) \text{ or } uv \in E(H) \text{ or } (u \in V(G) \& v \in V(H)) \\ 2, & \text{otherwise} \end{cases}$

iii. $deg_{G+h}(u) = (deg_G(u) + |V(H)|, \ u \in V(G)) \& (deg_H(u) + |V(G)|, \ u \in V(H))$.

Proof. The proof of the parts (i)-(ii) and (iii) can be seen from [6] and [7], respectively.

Lemma 2.2. (I) Let $G = \Gamma[Z_n]$ and let $n = p^2$, where p is a prime number. Then $Z^*(\mathbb{Z}_{p^2}) = \{p, 2p, ..., (p-1)p^2\}$. Thus for every $x, y \in Z^*(\mathbb{Z}_{p^2}), xy = 0$ and $\Gamma[Z_{p^2}] = K_{p-1}$. If $n = pq$ such that p, q are distinct prime numbers, then $Z^*(\mathbb{Z}_{pq}) = A \cup B,$

where $A = \{pk: k = 1, 2, ..., q-1\}$ and $B = \{qk: k = 1, 2, ..., p-1\}$. For any $x, y \in Z^*(\mathbb{Z}_{pq}), xy = 0$ if and only if $x \in A, y \in B$ or $x \in B, y \in A.$ So, $\Gamma[Z_{pq}] = K_{p-1,q-1}$.

Theorem 2.1. (II) $\Gamma[Z_{p^3}] \cong K_{p-1} + \overline{K}_{p^2-p}$, where \overline{K}_{p^2-p} is complement graph of complete graph K_{p^2-p}.
The zero-divisor graph of the ring \mathbb{Z}_{27} is illustrated in Figure 1.

![Figure 1. \(\Gamma[\mathbb{Z}_{27}]\)](image)

3. MAIN RESULTS

In this section we compute the degree distance of the zero-divisor graph $\Gamma[\mathbb{Z}_n]$ for $n = p^2$, $n = pq$ and $n = p^3$, where p, q are distinct prime numbers.

Theorem 3.1. The degree distance of $G = \Gamma[\mathbb{Z}_{p^2}]$ is

$$D'(G) = (p - 1)(p - 2)^2.$$

Proof. From Lemma 2.2, we have $\Gamma[\mathbb{Z}_{p^2}] = K_{p-1}$. Since for any $x, y \in V(K_{p-1})$, $deg(x) = p - 2$ and $d_g(x, y) = 1$, we obtain

$$D'(G) = \sum_{\{u,v\}\subseteq V(G)} [deg_G(u) + deg_G(v)]d_g(u,v)$$

$$= \sum_{u \neq v} (p - 2 + p - 2).1$$

$$= |E(K_{p-1})|.(2p - 4)$$

$$= \frac{2}{(p - 1)(p - 2)}.(2p - 4)$$

$$= (p - 1)(p - 2)^2,$$

which completes proof.

Theorem 3.2. The degree distance of $G = \Gamma[\mathbb{Z}_{pq}]$ is

$$D'(G) = 5(p^2q + pq^2 - (p^2 + q^2)) - 28pq + 23(p + q) - 18.$$

Proof. From Lemma 2.2, we have $Z^*(\mathbb{Z}_{pq}) = A \cup B$, where $A = \{ pk: k = 1,2,\ldots,q - 1 \}$ and $B = \{ qk: k = 1,2,\ldots,p - 1 \}$ and $\Gamma[\mathbb{Z}_{pq}] = K_{p-1,q-1}$. For $u \in A, v \in B$, we have $deg_G(u) = p - 2$, $deg_G(v) = q - 1$. The number of paths of length 2 for $u,v \in A$ is $(q - 1)(q - 2)$ and for $u,v \in B$ is $(p - 1)(p - 2)$. Thus we get

$$D'(G) =$$

$$\sum_{\{u,v\}\subseteq V(G)} [deg_G(u) + deg_G(v)]d_g(u,v)$$

$$= \sum_{u \in A, v \in B} [deg_G(u) + deg_G(v)].1$$

$$+ \sum_{u,v \in A, u \neq v} [deg_G(u) + deg_G(v)].2$$

$$+ \sum_{u,v \in B, u \neq v} [deg_G(u) + deg_G(v)].2$$

$$= (p + q - 2)(p - 1)(q - 1)$$

$$+ 2(2p - 2)(q - 1)(q - 2)$$

$$+ 2(2q - 2)(p - 1)(p - 2)$$

$$= 5(p^2q + pq^2 - (p^2 + q^2)) - 28pq$$

$$+ 23(p + q) - 18.$$

Thus proof is complete.

Theorem 3.3. The degree distance of $G = \Gamma[\mathbb{Z}_{p^3}]$ is

$$D'(G) = 3p^5 - 6p^4 - 3p^3 + 9p^2 + p - 4.$$

Proof. From proof of the Theorem 2.1 in [8], we have

$$Z^*(\mathbb{Z}_{p^3}) = A \cup B,$$

where $A = \{ p^2k: k = 1,2,\ldots,p - 1 \}$ and $B = \{ pk: k = 1,2,\ldots,p^2 - 1; p \nmid k \}$. From the features of these sets and adjacency relation of zero-divisor graph, three cases occur:

If $u,v \in A$, then u is adjacent to v; if $u \in A, v \in B$, then u is adjacent to v; if $u,v \in B$, then u is not adjacent to v, thus $d_g(u,v) = 2$. Since by Theorem 2.1 we have $\Gamma[\mathbb{Z}_{p^3}] \cong K_{p-1} + K_{p^2-p},$
we will consider the graph G as $K_{p-1} + \bar{K}_{p^2-p}$ with $|V(G)| = |V(\Gamma[Z_{p^3}])| = p^2 - 1$ vertices. From Lemma 2.1, we have

$$deg_G(a) = \begin{cases} p^2 - 2, & a \in V(K_{p-1}) \\ p - 1, & a \in V(\bar{K}_{p^2-p}) \end{cases}$$ (1)

and

$$|E(G)| = |E(\Gamma[Z_{p^3}])|$$

$$= |E(K_{p-1})| + |E(\bar{K}_{p^2-p})|$$

$$+ |V(K_{p-1})| \cdot |V(\bar{K}_{p^2-p})|$$

$$= \frac{(p - 1)(p - 2)}{2} + (p - 1)(p^2 - p)$$

$$= \frac{(p - 1)(2p^2 - p - 2)}{2}. \quad (2)$$

We can also write

$$D'(G) =$$

$$\sum_{(u,v) \in E(G)} [deg_G(u) + deg_G(v)]d_G(u,v)$$

$$= \sum_{u \in A \cup B} [deg_G(u) + deg_G(v)]. 1$$

$$+ \sum_{u,v \in A, u \neq v} [deg_G(u) + deg_G(v)]. 1$$

$$+ \sum_{u,v \in B, u \neq v} [deg_G(u) + deg_G(v)]. 2. \quad (3)$$

If we consider the distance matrix of the zero-divisor graph $\Gamma[Z_{p^3}]$ with $p^2 - 1$ vertices, the number of entries above the main diagonal is $\frac{(p^2-1)(p^2-2)}{2}$. The total number of paths of length 2 is $\frac{1}{2}$. Therefore the number of paths of length 2 is

$$\frac{(p^2-1)(p^2-2)}{2} - \frac{(p-1)(2p^2-p-2)}{2}$$

$$= \frac{p^4 - 2p^3 + p}{2}. \quad (4)$$

By using (1), (2), (4) in (3), we obtain

$$D'(G) = (p - 1)(p^2 - p)(p^2 + p - 3)$$

$$+ \frac{(p - 1)(p - 2)}{2}. 2(p^2 - 2)$$

$$+ 2 \left(\frac{p^4 - 2p^3 + p}{2} \right). 2(p - 1)$$

$$= 3p^5 - 6p^4 - 3p^3 + 9p^2 + p - 4.$$

So, proof is complete.

Acknowledgment

The author declare that there is no conflict of interests regarding the publication of this work and thank the referees for his/her valuable contributions.

REFERENCES

Sakarya University Journal of Science 24(3), 531-535, 2020
N. Feyza YALÇIN
Degree Distance of Zero-Divisor Graph $\Gamma[Z_n]$

