Yıl 2018, Cilt 22, Sayı 6, Sayfalar 1857 - 1862 2018-12-01

Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function

Erdinç Dundar [1] , Nimet P. Akın [2] , Uğur Ulusu [3]

53 110

In this paper, we introduce the concepts of strongly asymptotically lacunary  I-invariant equivalence, f-asymptotically lacunary I-invariant equivalence, strongly  f-asymptotically lacunary I-invariant equivalence and asymptotically lacunary I-invariant statistical equivalence for sequences of sets. Also, we investigate some relationships among these concepts.

Asymptotic equivalence, modulus function, I-convergence
  • [1] M. Baronti, and P. Papini, Convergence of sequences of sets, In Methods of functional analysis in approximation theory, ISNM 76, Birkhäuser, Basel, 133-155,1986.
  • [2] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc. 31, 421–432, 1985.
  • [3] G. Beer, Wijsman convergence: A survey, Set-Valued Anal. 2 ,77–94, 1994.
  • [4] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241–244, 1951.
  • [5] J. A. Fridy, On statistical convergence, Analysis, 5, 301–313,1985.
  • [6] J. A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160(1), 43–51,1993.
  • [7] Ö. Kişi and Nuray, F. A new convergence for sequences of sets, Abstract and Applied Analysis, Article ID 852796, 6 pages, 2013.
  • [8] Ö. Ki▁si, H. Gümü▁s, F. Nuray I-Asymptotically lacunary equivalent set sequences defined by modulus function, Acta Universitatis Apulensis, 41, 141-151,2015.
  • [9] P. Kostyrko, T. Šalát, W. Wilczyński, I-Convergence, Real Anal. Exchange, 26(2), 669–686, 2000.
  • [10] V. Kumar, A. Sharma, Asymptotically lacunary equivalent sequences defined by ideals and modulus function, Mathematical Sciences. 6(23), 5 pages, 2012.
  • [11] G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80, 167–190, 1948.
  • [12] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100, 161–166, 1986.
  • [13] M. Marouf, Asymptotic equivalence and summability, Int. J. Math. Math. Sci. 16(4), 755-762, 1993.
  • [14] M. Mursaleen, O. H. H. Edely, On the invariant mean and statistical convergence, Appl. Math. Lett., 22, 1700–1704, 2009.
  • [15] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math. 9 , 505–509, 1983.
  • [16] M. Mursaleen, On finite matrices and invariant means, Indian J. Pure and Appl. Math. 10, 457–460, 1979.
  • [17] H. Nakano, Concave modulars, J. Math. Soc. Japan, 5, 29-49, 1953.
  • [18] F. Nuray, B. E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math. 49, 87–99, 2012.
  • [19] F. Nuray, E. Savaş, Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math. 10, 267–274, 1994.
  • [20] F. Nuray, H. Gök, U. Ulusu, I_σ-convergence, Math. Commun. 16, 531–538, 2011.
  • [21] N. Pancarog ̆lu, F. Nuray, Statistical lacunary invariant summability, Theoretical Mathematics and Applications, 3(2) , 71–78, 2013.
  • [22] N. Pancaroğlu, F. Nuray, On Invariant Statistically Convergence and Lacunary Invariant Statistically Convergence of Sequences of Sets, Progress in Applied Mathematics, 5(2), 23–29, 2013.
  • [23] N. Pancarog ̆lu, F. Nuray and E. Savaş, On asymptotically lacunary invariant statistical equivalent set sequences, AIP Conf. Proc. 1558(780), http://dx.doi.org/10.1063/1.4825609, 2013.
  • [24] N. Pancaroğlu and F. Nuray, Invariant Statistical Convergence of Sequences of Sets with respect to a Modulus Function, Abstract and Applied Analysis, Article ID 818020, 5 pages, 2014.
  • [25] N. Pancaroğlu and F. Nuray, Lacunary Invariant Statistical Convergence of Sequences of Sets with respect to a Modulus Function, Journal of Mathematics and System Science, 5, 122–126, 2015.
  • [26] N. Pancaroğlu, E. Dündar and U. Ulusu, Asymptotically I-Invariant Statistical Equivalence of Sequences of Set Defined By A Modulus Function, (Under review).
  • [27] R. F. Patterson, On asymptotically statistically equivalent sequences, Demostratio Mathematica, 36(1), 149–153, 2003.
  • [28] R. F. Patterson and E. Savaş, On asymptotically lacunary statistically equivalent sequences, Thai J. Math. 4(2), 267–272, 2006.
  • [29] S. Pehlivan, B. Fisher, Some sequences spaces defined by a modulus, Mathematica Slovaca, 45, 275-280, 1995.
  • [30] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., 30 , 81–94, 1963.
  • [31] E. Savaş, Some sequence spaces involving invariant means, Indian J. Math. 31, 1–8, 1989.
  • [32] E. Savaş, Strong σ-convergent sequences, Bull. Calcutta Math. 81, 295–300, 1989.
  • [33] E. Savaş, F. Nuray, On σ-statistically convergence and lacunary σ-statistically convergence, Math. Slovaca, 43(3), 309–315, 1993.
  • [34] E. Savaş, On I-asymptotically lacunary statistical equivalent sequences, Adv. Differ. Equ. (111) , doi:10.1186/1687-1847-2013-111, 2013.
  • [35] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 , 104–110, 1972.
  • [36] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 , 361–375, 1959.
  • [37] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequence of sets, Progress in Applied Mathematics 4(2), 99–109, 2012.
  • [38] U. Ulusu, F. Nuray, On asymptotically lacunary statistical equivalent set sequences, Journal of Mathematics, Article ID 310438, 5 pages, 2013.
  • [39] U. Ulusu and E. Dündar, I-Lacunary Statistical Convergence of Sequences of Sets. Filomat 28(8), 1567–1574, 2013.
  • [40] U. Ulusu, F. Nuray, Lacunary I_σ-convergence, (Under review).
  • [41] U. Ulusu, E. Gülle, Asymptotically I_σ-equivalence of sequences of sets,(Under review).
  • [42] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70, 186–188, 1964.
  • [43] R. A. Wijsman, Convergence of Sequences of Convex sets, Cones and Functions II, Trans. Amer. Math. Soc., 123(1), 32–45, 1966.
Birincil Dil en
Konular Matematik
Yayımlanma Tarihi December 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Orcid: 0000-0002-0545-7486
Yazar: Erdinç Dundar (Sorumlu Yazar)
Kurum: AFYON KOCATEPE ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0003-2886-3679
Yazar: Nimet P. Akın
Kurum: AFYON KOCATEPE ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-7658-6114
Yazar: Uğur Ulusu
Kurum: AFYON KOCATEPE ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder445147, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1857 - 1862}, doi = {10.16984/saufenbilder.445147}, title = {Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function}, key = {cite}, author = {Ulusu, Uğur and P. Akın, Nimet and Dundar, Erdinç} }
APA Dundar, E , P. Akın, N , Ulusu, U . (2018). Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function. Sakarya University Journal of Science, 22 (6), 1857-1862. DOI: 10.16984/saufenbilder.445147
MLA Dundar, E , P. Akın, N , Ulusu, U . "Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function". Sakarya University Journal of Science 22 (2018): 1857-1862 <http://www.saujs.sakarya.edu.tr/issue/31266/445147>
Chicago Dundar, E , P. Akın, N , Ulusu, U . "Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function". Sakarya University Journal of Science 22 (2018): 1857-1862
RIS TY - JOUR T1 - Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function AU - Erdinç Dundar , Nimet P. Akın , Uğur Ulusu Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.445147 DO - 10.16984/saufenbilder.445147 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1857 EP - 1862 VL - 22 IS - 6 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.445147 UR - http://dx.doi.org/10.16984/saufenbilder.445147 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function %A Erdinç Dundar , Nimet P. Akın , Uğur Ulusu %T Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 6 %R doi: 10.16984/saufenbilder.445147 %U 10.16984/saufenbilder.445147
ISNAD Dundar, Erdinç , P. Akın, Nimet , Ulusu, Uğur . "Asymptotically Lacunary I-Invariant Statistical Equivalence of Sequences of Sets Defined By A Modulus Function". Sakarya University Journal of Science 22 / 6 (Aralık 2018): 1857-1862. http://dx.doi.org/10.16984/saufenbilder.445147