Yıl 2018, Cilt 22, Sayı 6, Sayfalar 1743 - 1751 2018-12-01

KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES

Sevda Yıldız [1]

67 157

In the present paper, we obtain an abstract version of the Korovkin type theorem via the concept of statistical e-convergence in modular spaces for double sequences of positive linear operators. We give an application showing that the new result is stronger than classical ones. Also, we study an extension to non-positive operators.

Statistical e-modular convergence, double sequence, abstract Korovkin theorem
  • Bardaro, C., Boccuto, A., Demirci, K., Mantellini, I., Orhan, S., Triangular A-statistical approximation by double sequences of positive linear operators. Results Math. 2015; 68: 271-291.
  • Bardaro C., Boccuto A., Demirci K., Mantellini I., Orhan S. Korovkin-type theorems for modular -A-statistical convergence, J. Funct. Spaces. Article ID 160401 2015; 2015:1-11.
  • Bardaro C., Boccuto A., Dimitriou X. and Mantellini I., Abstract Korovkin type theorems in modular spaces and applications, Cent. Eur. J. Math. 2013; 11(10): 1774-1784.
  • Bardaro, C. and Mantellini, I., Korovkin's theorem in modular spaces, Commentationes Math. 2007; 47: 239-253.
  • Bardaro, C., Musielak,J., Vinti,G., Nonlinear integral operators and applications, de Gruyter Series in Nonlinear Analysis and Appl. Vol., 9 Walter de Gruyter Publ., Berlin, 2003.
  • Boccuto, A. and Dimitriou, X., Korovkin-type theorems for abstract modular convergence, Results in Mathematics 2016; 69: 477-495.
  • Boos, J., Leiger, T., Zeller, K. Consistency theory for SM-methods. Acta. Math. Hungar. 1997; 76: 83-116.
  • Boos, J. Classical and modern methods in summability. Oxford University Press Inc., New York, 2000.
  • Demirci K., Orhan S., Statistical relative approximation on modular spaces. Results in Mathematics 2017; 71: 1167-1184.
  • Demirci, K., Kolay, B., A-Statistical Relative Modular Convergence of Positive Linear Operators, Positivity 2017; 21: 847-863.
  • Karaku¸s, S., Demirci, K., Duman, O., Statistical approximation by positive linear operators on modular spaces. Positivity 2010; 14: 321-334.
  • Kozlowski W. M., Modular function spaces, Pure Appl. Math., Vol. 122, Marcel Dekker, Inc., New York, 1988.
  • Kuratowski K., Topology, Volls I and II, Academic Press, New York-London, 1966/1968.
  • Mantellini I., Generalized sampling operators in modular spaces, Commentationes Math. 1998; 38: 77-92.
  • Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Vol. 1034 Springer-Verlag, Berlin, 1983.
  • Musielak J., Nonlinear approximation in some modular function spaces I, Math. Japon. 1993; 38: 83-90.
  • Pringsheim, A. Zur theorie der zweifach unendlichen zahlenfolgen. Math. Ann. 1900; 53: 289-321.
  • Sever, Y., Talo, Ö. Statistical e-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables. Iranian Journal of Science and Technology, Transactions A: Science. 2017; 41(3): 851-857.
  • Yilmaz, B., Demirci, K., Orhan, S., Relative Modular Convergence of Positive Linear Operators, Positivity 2016; 20: 565-577.
Birincil Dil en
Konular Matematik
Yayımlanma Tarihi December 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Orcid: 0000-0002-4730-2271
Yazar: Sevda Yıldız (Sorumlu Yazar)
Kurum: SİNOP ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder383770, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1743 - 1751}, doi = {10.16984/saufenbilder.383770}, title = {KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES}, key = {cite}, author = {Yıldız, Sevda} }
APA Yıldız, S . (2018). KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES. Sakarya University Journal of Science, 22 (6), 1743-1751. DOI: 10.16984/saufenbilder.383770
MLA Yıldız, S . "KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES". Sakarya University Journal of Science 22 (2018): 1743-1751 <http://www.saujs.sakarya.edu.tr/issue/31266/383770>
Chicago Yıldız, S . "KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES". Sakarya University Journal of Science 22 (2018): 1743-1751
RIS TY - JOUR T1 - KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES AU - Sevda Yıldız Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.383770 DO - 10.16984/saufenbilder.383770 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1743 EP - 1751 VL - 22 IS - 6 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.383770 UR - http://dx.doi.org/10.16984/saufenbilder.383770 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES %A Sevda Yıldız %T KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 6 %R doi: 10.16984/saufenbilder.383770 %U 10.16984/saufenbilder.383770
ISNAD Yıldız, Sevda . "KOROVKIN THEOREM VIA STATISTICAL e-MODULAR CONVERGENCE OF DOUBLE SEQUENCES". Sakarya University Journal of Science 22 / 6 (Aralık 2018): 1743-1751. http://dx.doi.org/10.16984/saufenbilder.383770