Yıl 2018, Cilt 22, Sayı 6, Sayfalar 1601 - 1608 2018-12-01

Kesirli mertebeden sınır değer problemlerini çözmek için bir sıralama yöntemi
A collocation method for solving boundary value problems of fractional order

SERTAN ALKAN [1] , AYDIN SEÇER [2]

268 246

Bu makalede sinc sıralama yöntemi, uyumlu kesirli türev içeren ikinci mertebeden kesirli sınır değer problemlerinin çözümünü elde etmek için kullanıldı. Bu amaçla sinc baz fonksiyonlarının kesirli türevlerini içeren terimleri ifade etmek için bir teorem ispat edildi. Yöntemin etkinliğini ve doğruluğunu göstermek için bazı problemler çözüldü ve elde edilen çözümler diğer sayısal yöntemler kullanılarak elde edilen yaklaşık çözümler ve problemlerin tam çözümleri ile karşılaştırıldı.

In this paper, the sinc collocation method is used to obtain the solution of the second-order fractional boundary value problems based on the conformable fractional derivative. For this purpose a theorem is proved to represent the terms having fractional derivatives in terms of sinc basis functions. To show the efficiency and accuracy of the present method, some problems are solved and the obtained solutions are compared with the approximate solutions obtained by using the other numerical methods as well as the exact solutions of the problems.
  • S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, 1993.
  • K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, NewYork: Wiley, 1993.
  • K. B. Oldham, J. Spanier, The fractional calculus, Academic Press, NewYork and London, 1974.
  • I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  • R. Herrmann, Fractional Calculus:An Introduction for Physicists, World Scientific, Singapore, 2014.
  • J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.
  • S. Alkan, V. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbilisi Mathematical Journal, (2017),10(2), pp. 1-13.
  • R. P. Meilanov, R. A. Magomedov, Thermodynamics in Fractional Calculus, Journal of Engineering Physics and Thermophysics, (2014), 87(6):1521-1531.
  • V. F. Hatipoglu, , S. Alkan, A. Secer, An efficient scheme for solving a system of fractional differential equations with boundary conditions, Advances in Difference Equations, 2017.1 (2017): 204.
  • Khalil, R., Al Horani, M., Yousef, A. and Sababeh, M. A new definition of fractional derivative, J. Comput. Appl. Math., (2014), 264:65-70.
  • Thabet Abdeljawad, On the conformable fractional calculus, Journal of Computational and Applied Mathematics, (2015), 279:57-66.
  • N. Benkhettou, S. Hassani, D.F.M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.-Sci., (2016), 28(1):93-98.
  • W.S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., (2015), 290:150-158.
  • H. Batarfi, J. Losada, J.J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Space, (2015), 6.
  • E. Hesameddini, E. Asadollahifard, Numerical solution of multi-order fractional differential equations via the sinc collocation method, Iranian Journal Of Numerical Analysis And Optimization, (2015), 5(1):37-48.
  • G. Wu, E. W. M. Lee, Fractional variational iteration method and its application, Phys. Lett. A., (2010), 374:2506-2509.
  • V. Daftardar-Gejji, H. Jafari, Solving a multi-order fractional differential equation using adomian decomposition, Appl. Math. Comput., (2007), 189:541-548.
  • O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A., (2008), 372:451-459.
  • I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., (2009), 14:674-684.
  • M. U. Rehman, R. A. Khan, A numerical method for solving boundary value problems for fractional differential equations, Appl. Math. Model., (2012), 36(3):894-907.
  • F. Stenger, Approximations via Whittaker's cardinal function, J. Approx. Theory, (1976), 17(3):222-240.
  • F. Stenger, A sinc-Galerkin method of solution of boundary value problems, Math. Comput., (1979), 33(145):85-109.
  • E. T. Whittaker, On the functions which are represented by the expansions of the interpolation theory, Proc. R. Soc. Edinb., (1915), 35:181-194.
  • J. M. Whittaker, Interpolation Function Theory, Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, London, 1935.
  • S. Alkan, A new solution method for nonlinear fractional integro-differential equations, DCDS-S, (2015), 8(6):1065-1077.
  • S. Alkan, A. Secer, Solution of nonlinear fractional boundary value problems with nonhomogeneous boundary conditions, Appl. Comput. Math.,(2015), 14(3):284-295.
  • Y. Wang, H. Song, D. Li, Solving two-point boundary value problems using combined homotopy perturbation method and Greens function method, Appl. Math. Comput., (2009), 212(2): 366-376.
Birincil Dil en
Konular Matematik
Yayımlanma Tarihi December 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: SERTAN ALKAN
Kurum: ISKENDERUN TECHNICAL UNIVERSITY
Ülke: Turkey


Yazar: AYDIN SEÇER
Kurum: Yildiz Technical University
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder352088, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1601 - 1608}, doi = {10.16984/saufenbilder.352088}, title = {A collocation method for solving boundary value problems of fractional order}, key = {cite}, author = {ALKAN, SERTAN and SEÇER, AYDIN} }
APA ALKAN, S , SEÇER, A . (2018). A collocation method for solving boundary value problems of fractional order. Sakarya University Journal of Science, 22 (6), 1601-1608. DOI: 10.16984/saufenbilder.352088
MLA ALKAN, S , SEÇER, A . "A collocation method for solving boundary value problems of fractional order". Sakarya University Journal of Science 22 (2018): 1601-1608 <http://www.saujs.sakarya.edu.tr/issue/31266/352088>
Chicago ALKAN, S , SEÇER, A . "A collocation method for solving boundary value problems of fractional order". Sakarya University Journal of Science 22 (2018): 1601-1608
RIS TY - JOUR T1 - A collocation method for solving boundary value problems of fractional order AU - SERTAN ALKAN , AYDIN SEÇER Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.352088 DO - 10.16984/saufenbilder.352088 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1601 EP - 1608 VL - 22 IS - 6 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.352088 UR - http://dx.doi.org/10.16984/saufenbilder.352088 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science A collocation method for solving boundary value problems of fractional order %A SERTAN ALKAN , AYDIN SEÇER %T A collocation method for solving boundary value problems of fractional order %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 6 %R doi: 10.16984/saufenbilder.352088 %U 10.16984/saufenbilder.352088
ISNAD ALKAN, SERTAN , SEÇER, AYDIN . "Kesirli mertebeden sınır değer problemlerini çözmek için bir sıralama yöntemi". Sakarya University Journal of Science 22 / 6 (Aralık 2018): 1601-1608. http://dx.doi.org/10.16984/saufenbilder.352088