Yıl 2018, Cilt 22, Sayı 6, Sayfalar 1559 - 1566 2018-12-01

k-Kinematik Yüzeyler İçin Konjuge Tanjant Vektörler, Asimptotik Doğrultular, Euler Teoremi ve Dupin Göstergesi
Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces

Yasemin Kemer [1] , Erhan Ata [2]

122 242

Bu çalışmada, 3 boyutlu Öklid uzayı E3te bir M yüzeyinin noktalarına kuaterniyonlar ile tanımlanan katı cisim hareketi uygulanarak elde edilen bir Mg k-kinematik yüzeyini tanımladık. Daha sonra bu yüzey için bir yüzeyi diferensiyel geometrik olarak daha iyi anlamamızı sağlayan ait şekil operatörü, asimptotik doğrultu, konjuge tanjant vektörler, Euler Teoremi ve Dupin göstergesi gibi önemli kavramları hesaplayıp inceledik. 

In this study, we define the k-kinematic surface Mg which is obtained from a surface M on Euclidean 3-surface E3 by applying rigid motion described by quaternions to points of M. Then we investigate and calculate for this surface some important concepts such as shape operator, asymptotic vectors, conjugate tangent vectors, Euler theorem and Dupin indicatrix which help to understand a surface differential geometrically well. 

  • A.C. Çöken, Ü. Çiftçi, C. Ekici, “On parallel timelike ruled surfaces with timelike rulings”, Kuwait Journal of Science and Engineering 35.1A, 2008, 21.
  • A. Grey, “Modern differential geometry of curves and surfaces”, Studies in Advanced Mathematics, CRC Press, Ann Arbor, 1993.
  • A.M. Patriciu, “On some 1, 3H3-helicoidal surfaces and their parallel surfaces at a certain distance in 3-dimensional Minkowski space”, Annals of the University of Craiova-Mathematics and Computer Science Series 37.4, 93-98, 2010.
  • A.P. Kotel’nikov, “Vintovoe Schislenie i Nikotoriya Prilozheniya evo k Geometrie i Mechaniki”, Kazan, 1895.
  • A. Sabuncuoğlu, “Diferensiyel Geometri”, Nobel Yayıncılık, 2010.
  • A.T. Yang, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms”, Ph.D Thesis, Columbia Univercity, 1963.
  • A.T. Yang, F. Freudenstein, “Application of a dual-number quaternion algebra to the analysis of spatial mechanisms”, ASME journal of Applied Mechanics, 86E(2) (1964), 300-308.
  • B. Jütler, M.G. Wagner, “Computer aided geometric design with spatial rational B-spline motions”, ASME J. Mech. Design 119(2) (1996), 193-201.
  • D. Sağlam, Ö. Boyacıoğlu Kalkan, “Surfaces At A Constant Distance From Edge Of Regression On A Surface In ”, Differential Geometry-Dynamical Systems, 12, 187-200, 2010.
  • D. Sağlam, Ö. Boyacıoğlu Kalkan, “The Euler Theorem and Dupin Indicatrix For Surfaces At A Constant Distance From Edge Of Regression On A Surface In ”, Matematiqki Vesnik, 65(2) (2013), 242-249.
  • D. Sağlam, Ö. Kalkan, “Conjugate tangent vectors and asymptotic directions for surfaces at a constant distance from edge of regression on a surface in ”, Konuralp Jornal of Mathematics (KJM) 2.1 (2014), 24-35.
  • E. Study, “Von den Bewegungen und Umlegungen”, Math. Ann. 39 (1891), 441-566.
  • E. Study, “Geometrie der Dynamen”, Leipzig, Germany, 1903.
  • F.M. Dimentberg, “The Screw Calculus and Its Applications in Mechanics”, Moscow, 1965.
  • H.H. Hacısalihoğlu, “Diferensiyel Geometri”, İnönü Üniversitesi Fen-Edeb. Fakültesi Yayınları, Ankara, 1983.
  • H. Pottmann, J. Wallner, “Computational Line Geometry”, Springer Verlag, New York, 2001.
  • H. Pottmann, J. Wallner, “Contributions to motion based surface design”, Technical report Nr. 45, Institut fr Geometrie, Technische Universitt Wien, 1997.
  • J.M. Selig, M. Husty, “Half-turns and line symmetric motions”, Mech. Mach. Theory 46(2) (2011), 156-167.
  • K. Sprott, B. Ravani, “Kinematic generation of ruled surfaces”, Advances in Computational Mathematics, 17 (2002), 115-133.
  • L.P. Eisenhart, “A treatise on the differential geometry of curves and surfaces”, Ginn, 1909.
  • M. Hamann, “Line-symmetric motions with respect to reguli”, Mechanism and Machine Theory, 46 (7) (2011), 960-974.
  • Ö. Tarakçı, H.H. Hacısalihoğlu, “Surfaces At A Constant Distance From The Edge Of Regression On A Surface”, Applied Mathematics and Computation, 155 (2004), 81-93.
  • Q.J. Ge, “Kinematics-driven geometric modeling: A framework for simultaneous NC tool-path generation and sculpted surface design”, in: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN (1996), 1819-1824.
  • Q.J. Ge, D. Kang, M. Sirchia, “Kinematically generated dual tensor-product surfaces”, in: ASME Design Engineering Technical Conference (1998).
  • R. Lopez, “Differential geometry of curves and surfaces in Lorentz-Minkowski space”, arXiv preprint arXiv:0810.3351, 2008.
  • S. Nizamoğlu, “Surfaces réglées paralleles”, Ege Üniv. Fen Fak. Derg. 9 (1986), 37-48.
  • T. Craig, “Note on Parallel Surfaces”, Journal fr die reine und angewandte Mathematik, 94 (1883), 162-170.
  • W.K. Clifford, “Preliminary sketch of biquaternions”, Proc. London Math. Soc. (1871), pp. 381-395.
  • W. Kühnel, “Differential Geometry”, Student Mathematical Library, vol. 16. American Mathematical Society, Providence, 2002.
  • W.R. Hamilton, “On Quaternions; or on a new System of Imaginaries in Algebra” (letter to John T. Graves, dated October 17, 1843)." Philos. Magazine 25 (1843): 489-495.
  • Y. Ünlütürk, E. Özüsağlam, “On Parallel Surfaces In Minkowski 3-Space”, TWMS J. App. Eng. Math., 3(2) (2013), 214-222.
Birincil Dil en
Konular Matematik
Yayımlanma Tarihi December 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Yasemin Kemer
Kurum: DUMLUPINAR ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Erhan Ata
Kurum: DUMLUPINAR ÜNİVERSİTESİ
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder331231, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1559 - 1566}, doi = {10.16984/saufenbilder.331231}, title = {Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces}, key = {cite}, author = {Kemer, Yasemin and Ata, Erhan} }
APA Kemer, Y , Ata, E . (2018). Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces. Sakarya University Journal of Science, 22 (6), 1559-1566. DOI: 10.16984/saufenbilder.331231
MLA Kemer, Y , Ata, E . "Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces". Sakarya University Journal of Science 22 (2018): 1559-1566 <http://www.saujs.sakarya.edu.tr/issue/31266/331231>
Chicago Kemer, Y , Ata, E . "Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces". Sakarya University Journal of Science 22 (2018): 1559-1566
RIS TY - JOUR T1 - Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces AU - Yasemin Kemer , Erhan Ata Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.331231 DO - 10.16984/saufenbilder.331231 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1559 EP - 1566 VL - 22 IS - 6 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.331231 UR - http://dx.doi.org/10.16984/saufenbilder.331231 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces %A Yasemin Kemer , Erhan Ata %T Conjugate Tangent Vectors, Asymptotic Directions, Euler Theorem and Dupin Indicatrix For k-Kinematic Surfaces %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 6 %R doi: 10.16984/saufenbilder.331231 %U 10.16984/saufenbilder.331231
ISNAD Kemer, Yasemin , Ata, Erhan . "k-Kinematik Yüzeyler İçin Konjuge Tanjant Vektörler, Asimptotik Doğrultular, Euler Teoremi ve Dupin Göstergesi". Sakarya University Journal of Science 22 / 6 (Aralık 2018): 1559-1566. http://dx.doi.org/10.16984/saufenbilder.331231