Yıl 2018, Cilt 22, Sayı 4, Sayfalar 1101 - 1108 2018-08-01

Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features
LBP Özelliklerine Dayanan Lokasyon Koruyan Projeksiyon (LPP) Boyut Azaltma Metodunun Farklı Sınıflandırıcılar Üzerindeki Performanslarının Karşılaştırılması

Sevcan Aytaç Korkmaz [1]

152 298

Image cells have taken with Light Microscope help. The local binary pattern (LBP) features have obtained for original images. High-dimensional of these LBP features is reduced to lower-dimensional with Locality Preserving Projections (LPP). These low dimensional data are classified by the Random Forest (RF), Naive Bayes (NB), and Artificial Neural Networks (ANN) classifiers. The classification results are compared with previous studies. The performance achieved with the ANN classifier is higher than the RF and NB classifiers. Moreover, feature vector size used in ANN classifier is a lower than feature vector size used in RF and NB classifiers. The success rates achieved with the ANN, RF, and NB classifiers is respectively 96.29%, 74.44%,and 70.00% according to LPP Method.

Görüntü hücreleri Işık Mikroskop yardımıyla alınmıştır. Yerel ikili örüntü (LBP) özellikleri orijinal görüntüler için elde edilmiştir. Bu görüntülerin LBP özelliklerinin yüksek boyutu, Lokasyon Koruyan Projeksiyon (LPP) ile daha düşük boyuta indirgenir. Bu düşük boyutlu veriler Rastgele Orman (RF), Naive Bayes (NB) ve Yapay Sinir Ağları (ANN) sınıflandırıcısı tarafından sınıflandırılmıştır. Yapılan sınıflandırma sonuçları daha önceden yapılan çalışmalar ile karşılaştırılmıştır. ANN sınıflandırıcısıyla elde edilen performans RF ve NB sınıflandırıcına göre daha yüksektir. Üstelik, ANN sınıflandırıcısında kullanılan özellik vektör boyutu, RF ve NB sınıflandırıcılarında kullanılan özellik vektörü boyutundan daha düşüktür. LPP Yöntemine göre ANN, RF ve NB sınıflandırıcıları ile elde edilen başarı oranları sırasıyla% 96.29,% 74.44 ve% 70.00'dır.

  • Ural, Berkan, et al. "Gastric Cancer Regional Detection System," Journal of medical systems, vol. 40, no. 1, pp. 31, 2016.
  • Hirayama, Akiyoshi, et al. "Quantitative metabolome profiling of colon and Gastric cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry," Cancer research, vol.69, no. 11, pp. 4918-4925, 2009
  • Brenner, Hermann, Dietrich Rothenbacher, and Volker Arndt. "Epidemiology of Gastric cancer," Cancer pidemiology: Modifiable Factors, pp. 467-477, 2009.
  • Fujioka, Naoko, et al. "Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy," Cancer Detection and Prevention, vol. 28, no.1, pp.32-36, 2004.
  • Sasaki, Yoshihiro, et al. "Computer-aided estimation for the risk of development of gastric cancer by image processing," Artificial Intelligence in Theory and Practice III, pp. 197-204, 2010.
  • Ahmadzadeh, D., Fiuzy, M., Haddadnia, J. “Gastric Cancer Diagnosis by Using a Combination of Image Processing Algorithms, Local Binary Pattern Algorithm and Support Vector Machine,” Journal of Basic and Applied ScientificRe
  • Akbari, Hamed, et al. "Cancer detection using infrared hyperspectral imaging." Cancer science, vol. 102, no. 4, pp. 852-857, 2011.
  • Tannapfel, Andrea, et al. "Expression of the p53 homologues p63 and p73 in multiple simultaneous gastric cancer." The Journal of pathology, vol. 195, no. 2, pp. 163-170, 2001.
  • Malkapurkar, AnaghaV, Rupali Patil, and Sachin Murarka. "A new technique for LBP method to improve face recognition." International Journal of Emerging Technology and Advanced Engineering, vol. 1, no.1, pp. 67-71, 2011.
  • T. Ojala, M. Pietik¨ainen and D. Harwood, “A comparative study of texture measures with classification based on feature distributions” Pattern Recognition, vol. 29, 1996.
  • He, Xiaofei, and Partha Niyogi. "Locality preserving projections," Advances in neural information processing systems, pp. 153-160, 2004.
  • Yildiz, Eray, and Yusuf Sevim. "Comparison of linear dimensionality reduction methods on classification methods." Electrical, Electronics and Biomedical Engineering (ELECO), National Conference on. IEEE, 2016.
  • Wang, Z., & He, B. “Locality perserving projections algorithm for hyperspectral image dimensionality reduction,” In Geoinformatics, 2011 19th International Conference on, pp. 1-4, IEEE, 2011.
  • Jin, Xin, et al. "Locality preserving projection on source code metrics for improved software maintainability, " Advances in Artificial Intelligence, pp. 877-886, 2006.
  • Pal, Mahesh. "Random forest classifier for remote sensing classification." International Journal of Remote Sensing, vol. 26, no. 1, pp. 217-222, 2005.
  • Korkmaz, Sevcan Aytaç, and Hamidullah Binol. "Analysis of Molecular Structure Images by using ANN, RF, LBP, HOG, and Size Reduction Methods for early Stomach Cancer Detection."Journal of Molecular Structure (2017).
  • http://www.atasoyweb.net/Geri-Yayilimli-Yapay-Sinir-Aglari. 25.12.2017.
  • McCallum, Andrew, and Kamal Nigam. "A comparison of event models for naive bayes text classification." AAAI-98 workshop on learning for text categorization, Vol. 752, pp. 41-48, 1998.
  • McCallum, Andrew, and Kamal Nigam. "A comparison of event models for naive bayes text classification." AAAI-98 workshop on learning for text categorization, Vol. 752, pp. 41-48, 1998.
  • Yongkui, S., Pengrui, L., Ying, W., Jingyu, Z., & Meijie, L. “The Prediction of the Caving Degree of Coal Seam Roof Based on the Naive Bayes Classifier,” Electronic Journal of Geotechnical Engineering, vol. 19, no. Z2, 201
  • Korkmaz, Sevcan Aytac, et al. "Diagnosis of Breast Cancer Nano-Biomechanics Images Taken from Atomic Force Microscope," Journal of Nanoelectronics and Optoelectronics, vol.11, no. 4, pp. 551-559, 2016.
  • Korkmaz, Sevcan Aytaç, et al. "A expert system for stomach cancer images with artificial neural network by using HOG features and linear discriminant analysis: HOG_LDA_ANN." Intelligent Systems and Informatics (SISY), 2017
  • Korkmaz, Sevcan Aytaç, et al. "Recognition of the stomach cancer images with probabilistic HOG feature vector histograms by using HOG features," Intelligent Systems and Informatics (SISY), 2017 IEEE 15th International Sym
  • Korkmaz, Sevcan Aytac, Mehmet Fatih Korkmaz, and Mustafa Poyraz. "Diagnosis of breast cancer in light microscopic and mammographic images textures using relative entropy via kernel estimation." Medical & biological enginee
  • Korkmaz, S. A., & Korkmaz, M. F. “ A new method based cancer detection in mammogram textures by finding feature weights and using Kullback–Leibler measure with kernel estimation,” Optik-International Journal for Light and
  • Korkmaz, S. Aytac, and M. Poyraz. "A New Method Based for Diagnosis of Breast Cancer Cells from Microscopic Images: DWEE—JHT." Journal of medical systems, vol. 38, no. 9, pp.1-9, 2014.
  • Korkmaz, Sevcan Aytac, and Mustafa Poyraz. "Least Square Support Vector Machine and Minumum Redundacy Maximum Relavance for Diagnosis of Breast Cancer from Breast Microscopic Images." Procedia-Social and Behavioral Science
  • Korkmaz, Sevcan AYTAÇ. "DETECTING CELLS USING IMAGE SEGMENTATION OF THE CERVICAL CANCER IMAGES TAKEN FROM SCANNING ELECTRON MICROSCOPE." The Online Journal of Science and Technology-October, vol. 7, no.4, 2017.
  • Korkmaz, Sevcan Aytaç, et al. "New methods based on mRMR_LSSVM and mRMR_KNN for diagnosis of breast cancer from microscopic and mammography images of some patients." International Journal of Biomedical Engineering and Tech
  • Korkmaz, Sevcan Aytaç, and Haluk Eren. "Cancer detection in mammograms estimating feature weights via Kullback-Leibler measure." Image and Signal Processing (CISP), 2013 6th International Congress on. Vol. 2., IEEE, 2013.
  • Sengur, Abdulkadir, and Ibrahim Turkoglu. "A hybrid method based on artificial immune system and fuzzy k-NN algorithm for diagnosis of heart valve diseases." Expert Systems with Applications, vol. 35, no. 3, pp. 1011-1020,
  • Şengür, Abdülkadir, İbrahim Türkoğlu, and M. Cevdet İnce. "ENDOSKOPİK GÖRÜNTÜLERİN DEĞERLENDİRİLMESİNDE GÖRÜNTÜ İŞLEME TEMELLİ AKILLI BİR KARAR DESTEK SİSTEMİ." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.15,
  • Özçift, Akın, and Arif Gülten. "Genetic algorithm wrapped Bayesian network feature selection applied to differential diagnosis of erythemato-squamous diseases." Digital Signal Processing vol.23, no.1, pp. 230-237, 2013.
  • Güler, Inan, et al. "Classification of aorta doppler signals using variable coded-hierarchical genetic fuzzy system." Expert Systems with Applications, vol. 26, no. 3, pp. 321-333, 2004.
Konular Elektrik Elektronik Mühendisliği, Mühendislik (Genel)
Yayımlanma Tarihi August 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Sevcan Aytaç Korkmaz
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder349567, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1101 - 1108}, doi = {10.16984/saufenbilder.349567}, title = {Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features}, key = {cite}, author = {Aytaç Korkmaz, Sevcan} }
APA Aytaç Korkmaz, S . (2018). Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features. Sakarya University Journal of Science, 22 (4), 1101-1108. DOI: 10.16984/saufenbilder.349567
MLA Aytaç Korkmaz, S . "Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features". Sakarya University Journal of Science 22 (2018): 1101-1108 <http://www.saujs.sakarya.edu.tr/issue/31264/349567>
Chicago Aytaç Korkmaz, S . "Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features". Sakarya University Journal of Science 22 (2018): 1101-1108
RIS TY - JOUR T1 - Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features AU - Sevcan Aytaç Korkmaz Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.349567 DO - 10.16984/saufenbilder.349567 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1101 EP - 1108 VL - 22 IS - 4 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.349567 UR - http://dx.doi.org/10.16984/saufenbilder.349567 Y2 - 2017 ER -
EndNote %0 Sakarya University Journal of Science Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features %A Sevcan Aytaç Korkmaz %T Comparison of Performance on the Different Classifiers of the Locating Protected Projection (LPP) Dimension Reduction Method Based LBP Features %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 4 %R doi: 10.16984/saufenbilder.349567 %U 10.16984/saufenbilder.349567
ISNAD Aytaç Korkmaz, Sevcan . "LBP Özelliklerine Dayanan Lokasyon Koruyan Projeksiyon (LPP) Boyut Azaltma Metodunun Farklı Sınıflandırıcılar Üzerindeki Performanslarının Karşılaştırılması". Sakarya University Journal of Science 22 / 4 (Ağustos 2018): 1101-1108. http://dx.doi.org/10.16984/saufenbilder.349567