Yıl 2018, Cilt 22, Sayı 2, Sayfalar 799 - 805 2018-04-09

Hyperchaos in a new 4d supply chain system
Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos

Gültekin Çağıl [1] , Neslihan Açıkgöz [2]

24 21

The supply chain has a complex and chaotic structure in that it is under the influence of many factors in all the processes from raw material supply to customer delivery in order to meet customer needs. Chaotic supply chain means that the variables that make up the system exhibit some unexpected behaviors and can not make long-term predictions of these behaviors. In the literature, there are studies in which chaotic structures are examined by creating mathematical models of different supply chain systems. In this study, a linear controller was added to the demand state equation of a previously presented supply chain model for the first time and it is seen that this new supply chain system exhibited hyperchaotic behavior. Numerical analysis of the new 4-dimensional hypechaotic system was examined by using Matlab-Simulink program and hyperchaotic behavior was revealed with phase-portraits. It has been observed that there is a chaotic attractor similar to a crankshaft or multi-layered butterfly wing in phase portrait. As a result of the study, it is emphasized that the new term that leads to different behaviors in the supply chain system can be defined as "customer loyalty".

Tedarik zinciri, müşteri ihtiyaçlarını karşılayabilmek için hammadde tedarikinden başlayarak müşteriye ürün teslimine kadar devam eden tüm süreçlerdeki birçok faktörün etkisi altında olması bakımından karmaşık ve kaotik bir yapıya sahiptir.  Kaotik tedarik zinciri, sistemi oluşturan değişkenlerin beklenmedik bazı davranışlar sergilemesi ve bu davranışların uzun süreli tahminlerinin yapılamaması anlamına gelmektedir. Literatürde farklı tedarik zinciri sistemlerinin matematiksel modelleri oluşturularak kaotik yapılarının incelendiği çalışmalar mevcuttur. Bu çalışmada ilk kez daha önce sunulan bir tedarik zinciri modelinin talep durum denklemine lineer kontrolör eklenmiş ve oluşturulan bu yeni tedarik zinciri sisteminin hiperkaotik davranış sergilediği görülmüştür. Elde edilen yeni 4 boyutlu hiperkaotik sistemin Matlab-Simulink programı kullanılarak sayısal analizleri yapılmış ve hiperkaotik davranışı faz portreleri ile ortaya konmuştur. Faz portresinde krank mili ya da çok katlı kelebek kanadı gibi bir şekle benzeyen kaotik bir çekici oluştuğu gözlemlenmiştir. Çalışmanın sonucunda tedarik zinciri sisteminde farklı davranışların meydana gelmesine neden olan yeni terimin müşteri sadakati olarak tanımlanabileceği vurgulanmıştır.

  • O.E. Rössler, "An equation for hyperchaos," Physics Letters A, vol. 71, no. 2–3, pp. 155–156, 1979.
  • X. Wang, J. Song, "Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control", Commun Nonlinear Sci Numer Simulat, vol. 14, pp. 3351–3357, 2009.
  • W. Xingyuan, W. Yaqın, "Adaptive generalized synchronization of hyperchaos systems", International Journal of Modern Physics B, vol. 25, no. 32, pp. 4563–4571, 2011.
  • J. A, Zheng, "Simple universal adaptive feedback controller for chaos and hyperchaos control", Computers and Mathematics with Applications, vol. 61, no. 8, pp. 2000–2004, 2011.
  • F. Dou, J. Sun, W. Duan, K. Lu, "Controlling hyperchaos in the new hyperchaotic system", Communications in Nonlinear Science and Numerical Simulation , vol. 14, no. 2, pp. 552–559, 2009.
  • C. Di, X. Yang, D. Huang, "A new water resources supply-demand system and its hyperchaos control", Procedia Engineering, vol. 15, pp. 734 – 738, 2011.
  • J. Ding, W.Yang, H.Yao, "A New Modified Hyperchaotic Finance System and its Control", International Journal of Nonlinear Science, vol. 8, no. 1, pp. 59-66, 2009.
  • U.E.Kocamaz, H.Taşkın, Y.Uyaroğlu, A.Göksu “Control and synchronization of chaotic supply chains using intelligent approaches” Computers & Industrial Engineering, vol. 102, pp. 476-487, 2016.
  • X. Wang, M. Wang, "A hyperchaos generated from Lorenz system," Physica A, vol. 387, no. 14, pp. 3751–3758, 2008.
  • W. Wu, Z. Chen, Z.Yuan, "The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos", Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2340–2356, 2009.
  • A.M.A. El-Sayed, H.M. Nour, A. Elsaid, A.E. Matouk, A. Elsonbaty, "Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system", Applied Mathematics and Computation, vol. 239, pp. 333–345, 2014.
  • K.L.Croxton, S.J. Dastugue-Garcıa, D.M. Lambert, et All, “The Supply Chain Management Process”, The International Journal of Logistics Management, vol. 12, no. 2, pp. 13-35, 2001.
  • L.W. Snyder, Z. Atan, P. Peng, Y. Rong A.J. Schmitte, B. Sinsoysal, "OR/MS models for supply chain disruptions: a review", IIE Transactions, vol. 48, no. 2, pp. 89-109, 2016.
  • H. Singh, A. Singh, “Principles of Complexity and Chaos Theory in Project Execution: A New Approach to Management”, Cost Engineering, vol. 44, no. 12, pp. 23-33, 2002.
  • M. Grabinski, "Chaos – Limitation Or Even End Of Supply Chain Management", High Speed Flow of Material, Information and Capital, İstanbul, 2008.
  • D. Levy, "Chaos Theory And Strategy: Theory, Application, And Managerial Implications", Strategic Management Journal, vol. 15, pp. 167-178, 1994.
  • E.R. Larsen, J.D.V. Morecroft, J.S. Thomsen, "Complex behaviour in a production-distribution model", European Journal of Operational Research, vol. 119, pp. 61-74, 1999.
  • X.Wang, S.M. Disney, J. Wang, “Stability analysis of constrained inventory systems with transportation delay”, European Journal of Operational Research, vol. 223, no. 1, pp. 86 - 95, 2012.
  • X. Wang, S.M. Disney, J. Wang, "Exploring the oscillatory dynamics of a forbidden returns inventory system", International Journal of Production Economics, vol. 147, pp. 3-12, 2014.
  • R. C. Hilborn, "Chaos and nonlinear dynamics: an introduction for scientists and engineers". New York: Oxford University Press, 1994.
  • R. Barri, M.A. Martínez, S. Serrano, D. Wilczak, "When chaos meets hyperchaos: 4D Rössler model", Physics Letters A, vol. 379, no. 38, pp.2300-2305, 2015.
  • W. Wu, Z. Chen, "Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system", Nonlinear Dyn, vol. 60, pp. 615–630, 2010.
  • D. Cafagna, G. Grassi, "New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring", Int. J. Bifurc. Chaos, vol. 13, pp. 2889–2903, 2003.
  • Y.X. Li, G.R. Chen, W.K.S. Tang, "Controlling a uni- fied chaotic system to hyperchaotic", IEEE Trans. Circuits Syst. II, vol. 52, pp. 204–207, 2005.
  • Z.Q. Chen, Y. Yang, G.Y. Qi, Z.Z. Yuan, "A novel hyperchaos system only with one equilibrium", Phys. Lett. A, vol. 360, pp. 696–701, 2007.
  • T.G. Gao, G.R. Chen, Z.Q. Chen, S.J. Cang, "The generation and circuit implementation of a new hyperchaos based upon Lorenz system", Phys. Lett. A, vol. 361, pp. 78–86, 2007.
  • G.Y. Qi, M.A. Van Wyk, B.J. Van Wyk, G.R. Chen, "On a new hyperchaotic system", Phys. Lett. A, vol. 372, pp. 124–136, 2008.
  • J.Z. Wang, Z.Q. Chen, Z.Z. Yuan, "The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system", Chin. Phys., vol. 15, pp. 1216–1225, 2006.
  • L. Zhang, Y.-J.Li, Y.-Q. Xu, "Chaos synchronization of bullwhip effect in a supply chain," ICMSE '06, International Conference on Management Science and Engineering, pp. 557–560, 2006.
  • K. Giannakopoulos, T.Deliyannis, J. Hadjidemetriou, "Means for Detecting Chaos and Hyperchaos in Nonlinear Electronic Circuits", DSP, vol. 2, pp. 951-954, 2002.
  • A.B. Özer, E. Akın, " Tools For Detecing Chaos" , SAÜ, Fen Bilimleri Enstitüsü Dergisi vol. 9, no. 1, 2005.
Birincil Dil tr
Konular Endüstri Mühendisliği
Yayımlanma Tarihi Nisan 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Gültekin Çağıl
E-posta: neslihan@mersin.edu.tr
Kurum: Sakarya Üniversitesi
Ülke: Turkey


Yazar: Neslihan Açıkgöz
E-posta: neslihan@mersin.edu.tr
Kurum: Mersin Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder342278, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {799 - 805}, doi = {10.16984/saufenbilder.342278}, title = {Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos}, key = {cite}, author = {Açıkgöz, Neslihan and Çağıl, Gültekin} }
APA Çağıl, G , Açıkgöz, N . (2018). Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos. Sakarya University Journal of Science, 22 (2), 799-805. DOI: 10.16984/saufenbilder.342278
MLA Çağıl, G , Açıkgöz, N . "Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos". Sakarya University Journal of Science 22 (2018): 799-805 <http://www.saujs.sakarya.edu.tr/issue/30829/342278>
Chicago Çağıl, G , Açıkgöz, N . "Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos". Sakarya University Journal of Science 22 (2018): 799-805
RIS TY - JOUR T1 - Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos AU - Gültekin Çağıl , Neslihan Açıkgöz Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.342278 DO - 10.16984/saufenbilder.342278 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 799 EP - 805 VL - 22 IS - 2 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.342278 UR - http://dx.doi.org/10.16984/saufenbilder.342278 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos %A Gültekin Çağıl , Neslihan Açıkgöz %T Yeni bir 4-boyutlu tedarik zinciri sisteminde hiperkaos %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 2 %R doi: 10.16984/saufenbilder.342278 %U 10.16984/saufenbilder.342278