Yıl 2018, Cilt 22, Sayı 2, Sayfalar 557 - 571 2018-04-01

Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım
A novel approach for institutionalization analysis based on fuzzy cognitive maps

Enes Furkan Erkan [1] , Özer Uygun [2] , Alper Kiraz [3]

72 80

Kurumsallaşma, organizasyondaki yöneticilere ve çalışanlara bağlı olmadan, tüm süreçlerin şeffaf ve sistematik olarak yürütülmesini ifade eder. Kurumsallaşmanın mükemmeliyeti organizasyonun misyon, vizyon ve stratejik hedeflerine paralel yönde seyreden ticari faaliyetlerle sağlanabilir. Kurumsallaşmanın organizasyon içerisinde benimsenememesi organizasyonların uzun süreli yaşam döngüsünü engellemektedir. Bu nedenle, organizasyonların kurumsallaşma seviyelerini takip edebileceği ve bu takip sonucunda hangi iyileştirmeleri yapabilecekleri konusu çok önemli hale gelmektedir. Literatürde kurumsallaşmanın kavramsal olarak incelendiği birçok çalışma olmasına rağmen ileriye yönelik bir öngörü elde edilebilen sayısal yöntemlere dayalı bir çalışmaya rastlanmamıştır. Bu çalışmada, kurumsallaşma üzerinde etkili olan konseptler literatür ve uzman görüşleriyle belirlenerek yeni bir model önerilmiştir. Öncelikle uzmanlardan konseptler arasındaki ilişkiler dilsel olarak alınmıştır. Dilsel ifadeler, bulanık mantık uygulamalarında kullanılan ağırlık merkezi yöntemiyle sayısal değerlere dönüştürülmüştür. Daha sonra, Bulanık Bilişsel Haritalar(BBH) algoritması kullanılarak 3 farklı senaryo incelenmiş ve konseptlerin gelecekteki durumları tespit edilip, yorumlanmıştır. Geliştirilen model ile aynı zamanda kurumsallaşma üzerindeki en etkili konseptler ve geleceğe yönelik öngörüler de belirlenmiştir.  

Nowadays, it becomes very important to know the level of institutionalization and as a result what improvements they can make for organizations. Though there are many conceptual studies of institutionalization in the literature, there is no study based on numerical methods that can provide a foresight about institutionalization. In this paper, a new model has been proposed by determining concepts that are effective on institutionalization from literature and expert opinions. Firstly, the relationships between the concepts are taken from the experts linguistically. Linguistic expressions are converted to numerical values using the center of gravity method (COG) used in fuzzy logic applications. Then, three different scenarios were investigated by using the Fuzzy Cognitive Maps (FCMs) algorithm and the future states of the concepts were determined and interpreted. In the first scenario, an organization with poorly managed organizational concepts was considered. The institutionalization tendency in this organization has reached to 0,027 value which is the estimation calculated by FCM algorithm in the future. The second scenario and the third scenario represents a midlevel and good organization respectively. Institutionalization tendency values were 0.97 for the second and third scenarios. However, when the number of iterations representing the time period is examined, it is seen that the organization thought in the third scenario has reached this value before 9 iterations. This is because the organization in the third scenario is well managed in the current situation. With the developed model, the most effective concepts on institutionalization were also identified. It has been determined that the most important concepts affecting institutionalization are process management, information management and strategic management. Compared to the literature, the results seem to be consistent.

  • L. Broom and P. Selznick, Sociology: A Text with Adapted Readings. Row, Peterson, 1955.
  • A. D. May, A. Lotfi, C. Langensiepen, K. Lee, and G. Acampora, “Human Emotional Understanding for Empathetic Companion Robots,” in Advances in Computational Intelligence Systems, Springer, Cham, 2017, pp. 277–285.
  • A. Nikas and H. Doukas, “Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach,” in Robustness Analysis in Decision Aiding, Optimization, and Analytics, M. Doumpos, C. Zopounidis, and E. Grigoroudis, Eds. Springer International Publishing, 2016, pp. 239–263.
  • A. Amirkhani, E. I. Papageorgiou, A. Mohseni, and M. R. Mosavi, “A review of fuzzy cognitive maps in medicine: Taxonomy, methods, and applications,” Comput. Methods Programs Biomed., vol. 142, pp. 129–145, Apr. 2017.
  • R. Romero-Córdoba, J. A. Olivas, F. P. Romero, F. Alonso-Gonzalez, and J. Serrano-Guerrero, “An Application of Fuzzy Prototypes to the Diagnosis and Treatment of Fuzzy Diseases,” Int. J. Intell. Syst., vol. 32, no. 2, pp. 194–210, Feb. 2017.
  • D. T. Sarabai and K. Arthi, “Efficient Breast Cancer Classification Using Improved Fuzzy Cognitive Maps with Csonn,” Int. J. Appl. Eng. Res., vol. 11, no. 4, pp. 2478–2485, 2016.
  • E. I. Papageorgiou, J. Subramanian, A. Karmegam, and N. Papandrianos, “A risk management model for familial breast cancer: A new application using Fuzzy Cognitive Map method,” Comput. Methods Programs Biomed., vol. 122, no. 2, pp. 123–135, Nov. 2015.
  • J. Subramanian, A. Karmegam, E. Papageorgiou, N. Papandrianos, and A. Vasukie, “An integrated breast cancer risk assessment and management model based on fuzzy cognitive maps,” Comput. Methods Programs Biomed., vol. 118, no. 3, pp. 280–297, Mar. 2015.
  • C. T. Chen and Y. T. Chiu, “A study of fuzzy cognitive map model with dynamic adjustment method for the interaction weights,” in 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), 2016, pp. 699–702.
  • D. M. Case and C. D. Stylios, “Fuzzy Cognitive Map to model project management problems,” in 2016 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), 2016, pp. 1–6.
  • M. I. F. Ribeiro, F. A. F. Ferreira, M. S. Jalali, and I. Meidutė-Kavaliauskienė, “A fuzzy knowledge-based framework for risk assessment of residential real estate investments,” Technol. Econ. Dev. Econ., vol. 23, no. 1, pp. 140–156, Jan. 2017.
  • F. A. F. Ferreira, J. J. M. Ferreira, C. I. M. A. S. Fernandes, I. Meidutė-Kavaliauskienė, and M. S. Jalali, “Enhancing knowledge and strategic planning of bank customer loyalty using fuzzy cognitive maps,” Technol. Econ. Dev. Econ., pp. 1–17, Feb. 2017.
  • P. P. Groumpos, “Modelling Business and Management Systems Using Fuzzy Cognitive Maps: A Critical Overview,” IFAC-Pap., vol. 48, no. 24, pp. 207–212, Jan. 2015.
  • P. Cano Marchal, J. G. Garcia, and J. G. Ortega, “Application of Fuzzy Cognitive Maps and Run-to-Run Control to a Decision Support System for Global Set-Point Determination,” IEEE Trans. Syst. Man Cybern. Syst., pp. 1–12, 2017.
  • G. P. Peter, A. P. Antigoni, and G. P. Vasileios, “A New Mathematical Modelling Approach for Viticulture and Winemaking Using Fuzzy Cognitive Maps,” IFAC-Pap., vol. 48, no. 24, pp. 15–20, Jan. 2015.
  • F. C. A. Pacilly, J. C. J. Groot, G. J. Hofstede, B. F. Schaap, and E. T. L. van Bueren, “Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping,” Agron. Sustain. Dev., vol. 36, no. 2, p. 35, Jun. 2016.
  • J. M. Vasslides and O. P. Jensen, “Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders,” J. Environ. Manage., vol. 166, pp. 348–356, Jan. 2016.
  • R. Natarajan, J. Subramanian, and E. I. Papageorgiou, “Hybrid learning of fuzzy cognitive maps for sugarcane yield classification,” Comput. Electron. Agric., vol. 127, pp. 147–157, Sep. 2016.
  • I. Mustapha, B. M. Ali, A. Sali, M. F. A. Rasid, and H. Mohamad, “An energy efficient Reinforcement Learning based Cooperative Channel Sensing for Cognitive Radio Sensor Networks,” Pervasive Mob. Comput., vol. 35, pp. 165–184, Feb. 2017.
  • J. Kim, M. Han, Y. Lee, and Y. Park, “Futuristic data-driven scenario building: Incorporating text mining and fuzzy association rule mining into fuzzy cognitive map,” Expert Syst. Appl., vol. 57, pp. 311–323, Sep. 2016.
  • M. Amer, T. U. Daim, and A. Jetter, “Technology roadmap through fuzzy cognitive map-based scenarios: the case of wind energy sector of a developing country,” Technol. Anal. Strateg. Manag., vol. 28, no. 2, pp. 131–155, Feb. 2016.
  • G. Kyriakarakos, A. I. Dounis, K. G. Arvanitis, and G. Papadakis, “Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey,” Appl. Energy, vol. 187, pp. 575–584, Feb. 2017.
  • V. Çoban and S. Ç. Onar, “Modelling Solar Energy Usage with Fuzzy Cognitive Maps,” in Intelligence Systems in Environmental Management: Theory and Applications, C. Kahraman and İ. U. Sari, Eds. Springer International Publishing, 2017, pp. 159–187.
  • T. C. Kahveci, “The institutionalization and the enterprise modeling in the manufacturing firms,” Sakarya Üniversitesi, 2007.
  • P. Selznick, “Institutionalism ‘Old’ and ‘New,’” Adm. Sci. Q., vol. 41, no. 2, p. 270, Jun. 1996.
  • E. Karpuzoğlu, “Aile Şirketlerinin Sürekliliğinde Kurumsallaşma,” Istanb. Kültür Üniversitesi, vol. 1, pp. 42–53, 2004.
  • J. R. Kimberly, “Issues in the Creation of Organizations: Initiation, Innovation, and Institutionalization,” Acad. Manage. J., vol. 22, no. 3, pp. 437–457, Sep. 1979.
  • İ. Fındıkçı, Aile Şirketleri. 2014.
  • B. Kosko, “Fuzzy cognitive maps,” vol. 24, pp. 65–75, 1986.
  • R. Axelrod, Ed., Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, 1976.
  • A. K. Tsadiras, “Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps,” Inf. Sci., vol. 178, no. 20, pp. 3880–3894, Oct. 2008.
  • E. I. Papageorgiou, A. T. Markinos, and T. A. Gemtos, “Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application,” Appl. Soft Comput., vol. 11, no. 4, pp. 3643–3657, Jun. 2011.
  • Z. Sen, Fuzzy Logic and Hydrological Modeling. CRC Press, 2009.
  • P. P. Groumpos, “Fuzzy cognitive maps: Basic theories and their application to complex systems,” in Fuzzy cognitive maps, Springer, 2010, pp. 1–22.
  • P. Chytas, M. Glykas, and G. Valiris, “Software reliability modelling using fuzzy cognitive maps,” in Fuzzy Cognitive Maps, Springer, 2010, pp. 217–230.
  • G. Caruso, C. Scartascini, and M. Tommasi, “Are we all playing the same game? The economic effects of constitutions depend on the degree of institutionalization,” Eur. J. Polit. Econ., vol. 38, pp. 212–228, Jun. 2015.
  • D. Safina, “Favouritism and Nepotism in an Organization: Causes and Effects,” Procedia Econ. Finance, vol. 23, pp. 630–634, Jan. 2015.
  • Ö. Uygun, T. Canvar Kahveci, H. Taşkın, and B. Piriştine, “Readiness assessment model for institutionalization of SMEs using fuzzy hybrid MCDM techniques,” Comput. Ind. Eng., vol. 88, pp. 217–228, Oct. 2015.
  • E. F. Erkan, “Bulanık bilişsel haritalama yöntemiyle kurumsallaşma düzeyinin analizi,” Sakarya Üniversitesi, 2017.
Birincil Dil tr
Konular Endüstri Mühendisliği, Mühendislik (Genel)
Yayımlanma Tarihi Nisan 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Orcid: 0000-0002-5470-8333
Yazar: Enes Furkan Erkan
E-posta: eneserkan@sakarya.edu.tr
Kurum: Sakarya Üniversitesi
Ülke: Turkey


Yazar: Özer Uygun
E-posta: ouygun@sakarya.edu.tr
Kurum: Sakarya Üniversitesi
Ülke: Turkey


Yazar: Alper Kiraz
E-posta: kiraz@sakarya.edu.tr
Kurum: Sakarya Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder330835, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {557 - 571}, doi = {10.16984/saufenbilder.330835}, title = {Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım}, key = {cite}, author = {Uygun, Özer and Erkan, Enes Furkan and Kiraz, Alper} }
APA Erkan, E , Uygun, Ö , Kiraz, A . (2018). Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım. Sakarya University Journal of Science, 22 (2), 557-571. DOI: 10.16984/saufenbilder.330835
MLA Erkan, E , Uygun, Ö , Kiraz, A . "Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım". Sakarya University Journal of Science 22 (2018): 557-571 <http://www.saujs.sakarya.edu.tr/issue/30829/330835>
Chicago Erkan, E , Uygun, Ö , Kiraz, A . "Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım". Sakarya University Journal of Science 22 (2018): 557-571
RIS TY - JOUR T1 - Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım AU - Enes Furkan Erkan , Özer Uygun , Alper Kiraz Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.330835 DO - 10.16984/saufenbilder.330835 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 557 EP - 571 VL - 22 IS - 2 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.330835 UR - http://dx.doi.org/10.16984/saufenbilder.330835 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım %A Enes Furkan Erkan , Özer Uygun , Alper Kiraz %T Kurumsallaşma analizi için bulanık bilişsel haritalar temelli yeni bir yaklaşım %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 2 %R doi: 10.16984/saufenbilder.330835 %U 10.16984/saufenbilder.330835