Yıl 2018, Cilt 22, Sayı 2, Sayfalar 784 - 798 2018-04-08

Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği
Energy performance assessment of a residential house based on thermal comfort temperatures: Izmir sample

Nurdan Yıldırım Özcan [1] , Ebru Kuzgunkaya [2] , Gülden Gökçen Akkurt [3]

32 26

 Türkiye’de enerji tüketiminin yaklaşık %34’ü binalarda ve bunun %85 kadarı da ısıtma ve soğutma amaçlı kullanılmaktadır. Binalarda bulunan HVAC sistemlerinin işletme özellikleri, hem binanın ısıl konforunu hem de enerji tüketimlerini doğrudan etkilemektedir. Bu çalışmada, HVAC sistemlerinin işletme şartlarının, ısıl konfor koşulları ile enerji tüketimlerine olan etkisinin belirlenmesi amaçlanmaktadır. Bu amaçla İzmir ilindeki 100 m2’lik bir konut için öngörülen HVAC sisteminin kesikli ve sürekli rejimde, tek ve çift sıcaklık set değerleri ile tam mekanik kontrollü veya doğal havalandırmalı olarak çalıştırılması durumları incelenmiştir.

 

Isıl konfordan olan memnuniyet PMV değeri ile ifade edilmektedir. Bu kapsamda öncelikle, Design Builder yazılımı kullanılarak en iyi duruma karşılık gelen PMV=0’a göre HVAC sisteminin set sıcaklıları belirlenmiştir. Bu sıcaklık set değerlerinin kullanılması ile ele alınan 5 farklı durumda konut için yıllık birim ısıtma/soğutma enerji tüketimleri, birim birincil enerji tüketimi, yıl boyunca ailenin evde bulunduğu saatlerde sağlanan PMV değerleri ve PMV değerlerinin istatistiksel değerlendirilmesi gerçekleştirilmiştir. Elde edilen sonuçlara göre, incelenen 5 durum arasında normal beklenti seviyesinde % 99,6 kümülatif frekans yüzdesi ile ısıl konforu en çok sağlayan tam mekanik kontrollü, sürekli rejim, aylık çift ısıtma/soğutma operatif sıcaklık set değerli durumdur. Tam mekanik kontrollü, kesikli rejim, aylık tek ısıtma/soğutma hava sıcaklığı set değerli durum ise 2,04 kWh/m2/%KF birim memnuniyet enerji tüketimi değeri ile en az enerji tüketen durum olmaktadır.

34% of the energy consumption in Turkey belongs to buildings and around 85 % of this consumption is utilized for heating purposes. The operating characteristics of the HVAC systems in buildings directly affect both the building's thermal comfort and energy consumption. This study aims to determine the effect of operating conditions of the HVAC system on thermal comfort and energy consumption of residential buildings. For this purpose, the HVAC system for a 100 sqm residence in İzmir city has been investigated according to the single and double temperature set values at continues and intermittent operating modes for fully mechanically control or natural ventilation conditions.

Thermal comfort satisfaction is expressed by PMV value. In this context, primarily the set temperatures of the HVAC system are determined for PMV = 0 which represents the best case of thermal comfort by  using Design Builder software. Annual specific heating/cooling energy consumption, annual primer specific energy consumption, hourly PMV values during occupancy hours and statistical evaluation of these PMV values of a residential house are realized for considered 5 different operating conditions of HVAC system by using determined temperature set values. According to the obtained results, among 5 cases, the case with fully mechanical controlled, continuous regime,  monthly dual heating/cooling operative set values, provides the maximum thermal comfort for normal expectation level of the thermal comfort with a cumulative frequency of 99,6%. The case, with fully mechanical controlled, intermittent regime,  monthly single heating/cooling operative set values, consumes the minimum energy with specific satisfaction energy consumption of 2,04 kWh/m2/%KF.

  • [1] DIRECTIVE 2002/91/EC of the European Parliament and of the Council on the Energy Performance of Buildings, 2002.
  • [2] Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, EN ISO 7730, 2005.
  • [3] Ventilation for Buildings - Design Criteria for the Indoor Environment, CR 1752, 1998.
  • [4] Thermal Environmental Conditions for Human Occupancy, ANSI/ASHRAE, Standard 55-2013, Atlanta, GA, USA, 2013.
  • [5] Kalorifer Tesisatı Projelendirme Kuralları, TS 2164, 1988.
  • [6] S. P. Corgnati , E. Fabrizio ve . M. Filippi, «The impact of indoor thermal conditions, system controls and building types on the building energy demand,» Energy and Buildings, cilt 40, pp. 627-636, 2008.
  • [7] K. Yang ve C. Su, «An approach to building energy savings using the PMV index,» Building and Environment, cilt 32, no. 1, pp. 25-30, 1997.
  • [8] T. H. Karyono, «Report on thermal comfort and building energy studies in Jakarta - Indonesia,» Building and Environment, cilt 35, no. 1, pp. 77-90, 2000.
  • [9] W. Hanqing, H. Chunhua, L. Zhiqiang, T. Guangfa, L. Yingyun ve W. Zhiyong, «Dynamic evaluation of thermal comfort environment of airconditioned buildings,» Building and Environment, cilt 41, no. 11, pp. 1522-1529, 2006.
  • [10] K. W. Tham ve M. B. Ullah, «Building energy performance and thermal comfort in Singapore,» ASHRAE Transactions, cilt 99, no. 1, pp. 308-321, 1993.
  • [11] R. Holz, A. Hourigan, R. Sloop, P. Monkman ve M. Krarti, «Effects of standard energy conserving measures on thermal comfort,» Building and Environment, cilt 32, no. 1, pp. 31-43, 1997.
  • [12] J. F. Karlsson ve B. Moshfegh, «Energy demand and indoor climate in a low energy building-changed control strategies and boundary conditions,» Energy and Buildings, cilt 38, pp. 315-326, 2005.
  • [13] R. Becker, I. Goldberger ve M. Paciuk, «Improving energy performance of school buildings while ensuring indoor air quality ventilation,» Building and Environment, cilt 42, pp. 3261-3276, 2007.
  • [14] H. Jamil, J. Sanjayan, J. Wilson ve M. Alam, «Investigation of PCM as retrofitting option to enhance occupantthermal comfort in a modern residential building,» Energy and Buildings, cilt 133, p. 217–229, 2016.
  • [15] N. Delgarma, S. Delgarm ve B. Sajadia, «Multi-objective optimization of building energy performance andindoor thermal comfort: A new method using artificial bee colony(ABC),» Energy and Buildings, cilt 131, p. 42–53, 2016.
  • [16] Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics, EN 15251, 2007.
  • [17] P. O. Fanger, Thermal Comfort Analyses and Applications in Environmental Engineering, London: McGraw-Hill, 1970.
  • [18] K. Van der Linden, A. C. Boerstra, A. K. Raube ve S. R. Kurvers, «Thermal indoor climate building performance characterized by human comfort response,» Energy and Buildings, cilt 34, pp. 737-744, 2002.
  • [19] J. Huh ve . M. J. Brandemuehl, «Optimization of air-conditioning system operating strategies for hot and humid climates,» Energy and Buildings, cilt 40, pp. 1202-1213, 2008.
  • [20] B. Olesen, «The philosophy behind EN 15351: Indoor environmental criteria for design and calculation of energy performance of buildings,» Energy and Buildings, cilt 39, pp. 740-749, 2007.
  • [21] F. Butera, «Principles of thermal comfort,» Renewable and Sustainable Energy Reviews,, cilt 2, p. 39–66, 1998.
  • [22] M. S. Jang, C. D. Koh ve I. S. Moon, «Review of thermal comfort design based on PMV/PPD in cabins of Korean maritime patrol vessels,» Building and Environment, cilt 42, p. 55–61, 2007.
  • [23] K. H. Yang ve C. H. Su, «An approach to building energy savings using the PMV index,» Building and Environment, cilt 32, no. 1, pp. 25-30, 1997.
  • [24] F. Sehar, M. Pipattanasomporn ve S. Rahman, «Integrated automation for optimal demand management incommercial buildings considering occupant comfort,» Sustainable Cities and Society, cilt 28, p. 16–29, 2017.
  • [25] R. J. De Dear ve G. S. Brager, «Developing an adaptive model of thermal comfort and preference,» ASHRAE Transactions, cilt 104, no. 1A, pp. 145-167, 1998.
  • [26] L. Peeters, R. De Dear, J. Hensen ve W. D’haeseleer, «Thermal comfort in residential buildings: Comfort values and scales for building energy simulation,» Applied Energy, cilt 86, no. 5, pp. 772-780, 2009.
  • [27] A. C. Van der Linden, A. C. Boerstra, A. K. Raue, S. R. Kurvers ve R. J. De Dear, «Adaptive temperature limits: A new guideline in The Netherlands. A new approach for the assessment of building performance with respect to thermal indoor climate,» Energy and Buildings, cilt 38, pp. 8-17, 2006.
  • [28] G. S. Brager ve R. J. De Dear, «Thermal adaptation in the built environment: a literature review,» Energy and Building, cilt 17, pp. 83-96, 1998.
  • [29] R. A. Memon, S. Chirarattananon ve P. Vangtook, «Thermal comfort assessment and application of radiant cooling: A case study,» Building and Environment, cilt 43, pp. 1185-1196, 2008.
  • [30] S. Kumar, J. Mathur, S. Mathur , M. K. Singh ve V. Loftness, «An adaptive approach to define thermal comfort zones on psychrometric chart for naturally ventilated buildings in composite climate of India,» Building and Environment, cilt 109, pp. 135-153, 2016.
  • [31] O. Fanger ve J. Toftum, «Extension of the PMV model to non-air-conditioned buildings in warm climates,» Energy and Buildings, cilt 34, pp. 533-536, 2002.
  • [32] S. A. Damiati, S. A. Zaki ve H. B. Rija, «Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid Season,» Building and Environment, cilt 109, pp. 208-22, 2016.
  • [33] F. Ş. Sezer, «Sağlık Ocaklarında Konfor Koşullarının Değerlendirilmesi: Bursa/Nilüfer Örneği,» Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, cilt 28, no. 1, pp. 197-208, 2015.
  • [34] E. Z. E. Conceicao ve M. Lucio, «Thermal study of school buildings in winter conditions,» Building and Environment, cilt 43, pp. 782-792, 2008.
  • [35] A. Al-Mumin, O. Khattab ve G. Sridhar, «Occupants’ behavior and activity patterns influencing the energy onsumption in the Kuwaiti residences,» Energy and Buildings, cilt 35, pp. 549-559, 2003.
  • [36] M. Soleimani-Mohseni, B. Thomas ve P. Fahlen, «Estimation of operative temperature in buildings using artificial neural networks,» Energy and Buildings, cilt 38, pp. 635-640, 2006.
  • [37] Binalarda Isı Yalıtım Kurallar, TS 825, 2008.
  • [38] N. Eskin ve H. Turkmen, «Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey,» Energy and Buildings, cilt 40, p. 763–773, 2008.
  • [39] M. N. Inanici ve F. N. Demirbilek, «Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey,» Building and Environment, cilt 35, pp. 41-52, 2000.
  • [40] A. Uçar ve F. Balo, «Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey,» Applied Energy, cilt 86, pp. 730-736, 2009.
  • [41] K. O. Oral ve Z. Yılmaz, «Building form for cold climatic zones related to building envelope from heating energy conservation point of view,» Energy and Buildings, cilt 35, p. 383–388, 2003.
  • [42] M. Yaman, Energy efficiency in a university building:Energy performance assessment of IZTECH Administrative Building, İzmir: MSc. Thesis, Izmir Institute of Technology, 2009.
  • [43] C. Coşkun ve Z. Oktay, «Energy audit of a University Building in energy saving perspective. Seminar of Energy Performance of Buildings,» %1 içinde Proceedings of TESKON 2009, Izmir, 2009.
  • [44] N. Arslanoğlu ve Y. Abdulvahap, «The Effect Of Different Indoor Air Velocities and Temperatures On Thermal Comfort,» Isı Bilimi ve Tekniği Dergisi, cilt 31, no. 2, pp. 95 -100, 2011.
  • [45] «Design Builder Software.,» [Çevrimiçi]. Available: http://www.designbuilder.co.uk..
  • [46] Binaların Isıl Performansı-Meskenlerde Isıtma Amacıyla Kullanılan Enerjinin Hesaplanması, TS EN 832, 2007.
  • [47] D. B. Crawley, L. Lawrie ve C. Pedersen, «EnergyPlus: creating a newgeneration building energy simulation program,» Energy and Buildings, cilt 33, no. 4, pp. 319-331, 2001.
  • [48] «EnergyPlus Engineering Reference. The Reference to EnergyPlus Calculations,» [Çevrimiçi]. Available: http://www.eere.energy.gov/buildings/energyplus/pdfs/engineeringreference.pdF.
  • [49] «ASHRAE, Nonresidential Cooling and Heating Load Calculations,» %1 içinde ASHRAE Handbook Fundamentals, Atlanta, ASHRAE, 2005, p. Chapter 30.
  • [50] S. J. Rees , M. G. Davies, J. D. Spitler ve P. Haves, «Qualitative comparison of North American and U.K. cooling load calculation methods,» HVAC&Research, cilt 6, pp. 75-99, 2000.
  • [51] Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, ANSI/ASHRAE 140, 2007.
  • [52] The Government's Standard Assessment Procedure for Energy Rating of Dwellings”, 2005 Ed., Revision 1, Version 9.81, SAP2005, 2008.
  • [53] Energy Performance of buildings - Calculation of Energy Use for Space Heating and Cooling, ISO 13790, 2008.
Birincil Dil tr
Konular Mühendislik ve Temel Bilimler, Makine Mühendisliği, Mühendislik (Genel)
Yayımlanma Tarihi Nisan 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: Nurdan Yıldırım Özcan
E-posta: nurdan.yildirim@yasar.edu.tr
Kurum: YASAR UNIV
Ülke: Turkey


Yazar: Ebru Kuzgunkaya
E-posta: ebrukuzgunkaya@iyte.edu.tr
Kurum: IZMIR YUKSEK TEKNOLOJI ENSTITUSU

Yazar: Gülden Gökçen Akkurt
E-posta: guldengokcen@iyte.edu.tr
Kurum: IZMIR YUKSEK TEKNOLOJI ENSTITUSU

Bibtex @araştırma makalesi { saufenbilder292296, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {784 - 798}, doi = {10.16984/saufenbilder.292296}, title = {Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği}, key = {cite}, author = {Yıldırım Özcan, Nurdan and Gökçen Akkurt, Gülden and Kuzgunkaya, Ebru} }
APA Yıldırım Özcan, N , Kuzgunkaya, E , Gökçen Akkurt, G . (2018). Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği. Sakarya University Journal of Science, 22 (2), 784-798. DOI: 10.16984/saufenbilder.292296
MLA Yıldırım Özcan, N , Kuzgunkaya, E , Gökçen Akkurt, G . "Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği". Sakarya University Journal of Science 22 (2018): 784-798 <http://www.saujs.sakarya.edu.tr/issue/30829/292296>
Chicago Yıldırım Özcan, N , Kuzgunkaya, E , Gökçen Akkurt, G . "Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği". Sakarya University Journal of Science 22 (2018): 784-798
RIS TY - JOUR T1 - Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği AU - Nurdan Yıldırım Özcan , Ebru Kuzgunkaya , Gülden Gökçen Akkurt Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.292296 DO - 10.16984/saufenbilder.292296 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 784 EP - 798 VL - 22 IS - 2 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.292296 UR - http://dx.doi.org/10.16984/saufenbilder.292296 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği %A Nurdan Yıldırım Özcan , Ebru Kuzgunkaya , Gülden Gökçen Akkurt %T Isıl Konfor Sıcaklıklarına Bağlı Olarak Bir Konutun Enerji Performansının Değerlendirmesi: İzmir Örneği %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 2 %R doi: 10.16984/saufenbilder.292296 %U 10.16984/saufenbilder.292296