Yıl 2018, Cilt 22, Sayı 3, Sayfalar 1033 - 1047 2018-06-01

Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products

Murat Tuna [1] , Sedat Türe [2] , Rafig Gurbanov [3]

54 86

Reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6 (1) with 1-amino-2-propanol (2), in (1:1:2, 1:2:4 and 1:3:6) mole ratios, in excess of NaH, in THF and acetonitril solutions yield a total of 6 novel products:one mono-open chain, N3P3Cl5[HN-CH2-CH(CH3)-OH] (3); one monospiro,  N3P3Cl4[O-CH(CH3)-CH2-NH] (4); one trans bis-open chain, N3P3Cl4[HN-CH2CH(CH3)-OH]2 (5); one dispiro, N3P3Cl2[O-HC(CH3)-CH2-NH]2 (7); one tri-open chain, N3P3Cl3[HN-CH2CH(CH3)-OH]3 (6); and one tri-spiro, N3P3[O-HC(CH3)-CH2-NH]3(8) derivatives.These compounds have interesting structural aspects as well as physical properties. Their structures were established by elemental analysis, TL-MS, 31P and 1H NMR spectral data. Stability constants were determined using a simple potentiometric titration. For evaluation of melting behavior and purity of derivatives (7) and (8), thermal transition peaks and their corresponding enthalpies were determined via DSC technique. Spectroscopic data, product types and relative yields are compared with those of the previously investigated derivatives of N3P3Cl6 (1) with aliphatic difunctional reagents.

Hexachlorocyclotriphosphazene, 1-amino-2-propanol, spiro compounds, open chain compounds
  • [1 ] S. B. Lee, S. C. Song, J. Il Jin, and Y. S. Sohn, “Thermosensitive cyclotriphosphazenes [9],” Journal of the American Chemical Society, vol. 122, no. 34. pp. 8315–8316, 2000. [2 ] G. Peris and S. J. Miller, “Catalysis: Triumph of a chemical underdog,” Nature, vol. 452, no. 7186. pp. 415–416, 2008. [3 ] H. R. Allcock and S. Kwon, “An Ionically Cross-Linkable Polyphosphazene: Poly[bis(carboxylatophenoxy)phosphazene] and Its Hydrogels and Membranes,” Macromolecules, vol. 22, no. 1, pp. 75–79, 1989. [4 ] H. R. Allcock and M. L. Turner, “Ring Expansion and Polymerization of Transannular Bridged Cyclotriphosphazenes and Their Spirocyclic Analogues,” Macromolecules, vol. 26, no. 1, pp. 3–10, 1993. [5 ] H. R. Allcock and G. K. Dudley, “Lower critical solubility temperature study of alkyl ether based polyphosphazenes,” Macromolecules, vol. 29, no. 4, pp. 1313–1319, 1996 [6 ] D. B. Davies et al., “Chiral configurations of cyclophosphazenes,” J. Am. Chem. Soc., vol. 122, no. 50, pp. 12447–12457, 2000. [7 ] P. I. Richards and A. Steiner, “Cyclophosphazenes as Nodal Ligands in Coordination Polymers,” Inorg. Chem., vol. 43, no. 9, pp. 2810–2817, 2004. [8 ] H. R. Allcock and E. C. Kellam, “Incorporation of cyclic phosphazene trimers into saturated and unsaturated ethylene-like polymer backbones,” Macromolecules, vol. 35, no. 1, pp. 40–47, 2002. [9 ] M. Breza, “The electronic structure of planar phosphazene rings,” Polyhedron, vol. 19, no. 4, pp. 389–397, 2000. [10 ] A. B. Chaplin, J. A. Harrison, and P. J. Dyson, “Revisiting the electronic structure of phosphazenes,” Inorg. Chem., vol. 44, no. 23, pp. 8407–8417, 2005. [11 ] R. C. Haddon, “Theoretical study of the cyclotriphosphazenes importance of phosphorus d orbitals,” Chem. Phys. Lett., vol. 120, no. 4–5, pp. 372–374, 1985. [12 ] H. R. Allcock, M. L. Turner, and K. B. Visscher, “Synthesis of transannular- and spiro-substituted cyclotriphosphazenes: x-ray crystal structures of 1,1-[N3P3(OCH2CF3)4{O2C12H8}], 1,3-[N3P3(OCH2CF3)4{O2C12H8}], 1,1-[N3P3(OCH2CF3)4{O2C10H6}], and 1,3-[N3P3(OCH2CF3)4}O2C10H6}],” Inorg. Chem., vol. 31, no. 21, pp. 4354–4364, 1992. [13 ] H. R. Allcock, “Recent advances in phosphazene (phosphonitrilic) chemistry,” Chem. Rev., vol. 72, no. 4, pp. 315–356, 1972. [14 ] H. R. Allcock, J. S. Rutt, and M. Parvez, “Synthesis of Cyclic Phosphazenes with Isothiocyanato, Thiourethane, and Thiourea Side Groups: X-ray Crystal Structure of N3P3(NMe2)3(NCS)3,” Inorg. Chem., vol. 30, no. 8, pp. 1776–1782, 1991. [15 ] C. W. Allen, “Regio- and Stereochemical Control in Substitution Reactions of Cyclophosphazenes,” Chem. Rev., vol. 91, no. 2, pp. 119–135, 1991. [16 ] E. E. Ilter et al., “Phosphorus-nitrogen compounds. 14. Synthesis, stereogenism, and structural investigations of novel N/O spirocyclic phosphazene derivatives,” Inorg. Chem., vol. 46, no. 23, pp. 9931–9944, 2007. [17 ] K. Muralidharan, P. Venugopalan, and A. J. Elias, “Ansa versus spiro substitution of cyclophosphazenes: Is fluorination essential for ansa to spiro transformation of cyclophosphazenes?,” Inorg. Chem., vol. 42, no. 10, pp. 3176–3182, 2003. [18 ] A. J. Elias, B. Twamley, and J. M. Shreeve, “Syntheses and Experimental Studies on the Relative Stabilities of Spiro, Ansa , and Bridged Derivatives of Cyclic Tetrameric Fluorophosphazene,” pp. 2120–2126, 2001. [19 ] ChemicalComputingGroupInc., “Molecular Operating Environment (MOE),” Sci. Comput. Instrum., vol. 22, no. 1, p. 32, 2004. [20 ] D. J. Lingley, R. A. Shaw, M. Woods, and S. S. Krishnamurthy, “Studies of phosphazenes. part vi. 1 the preparation of the isomeric tetrachlorobis-isopropylaminocyclotriphosphazatrienes,” Phosphorus Sulfur Relat. Elem., vol. 4, no. 3, pp. 379–382, 1978. [21 ] S. S. Krishnamurthy, K. Ramachandran, and M. Woods, “Studies of Phosphazenes, Part Xi. Syntheses and Structures of Bis(Primary Amino)Hexachlorocyclotetraphosphazenes and Their Dimethylamino Derivatives,” Phosphorus Sulfur Relat. Elem., vol. 9, no. 3, pp. 323–328, 1981. [22 ] S. Beşli et al., “Crystallographic proof of double Walden inversion in nucleophilic substitution reactions of macrocyclic cyclotriphosphazene derivatives,” Eur. J. Inorg. Chem., no. 5, pp. 959–966, 2005. [23 ] S. Beşli, S. J. Coles, D. B. Davies, M. B. Hursthouse, A. Kiliç, and R. a Shaw, “A spiro to ansa rearrangement in cyclotriphosphazene derivatives.,” Dalton Trans., no. 26, pp. 2792–2801, 2007. [24 ] D. Davarci, S. Beşli, and F. Yuksel, “Reactions of cyclotriphosphazene with 1,6-diaminohexane and 1,8-diaminooctane: Mono-ansa, double- and triple-bridged derivatives,” Polyhedron, vol. 68, pp. 10–16, 2014. [25 ] S. Beşli, S. J. Coles, D. Davarci, D. B. Davies, and F. Yuksel, “Effect of chain length on the formation of intramolecular and intermolecular products: Reaction of diols with cyclotriphosphazene,” Polyhedron, vol. 30, no. 2, pp. 329–339, 2011. [26 ] K. K. Jin, U. S. Toti, R. Song, and S. S. Youn, “A macromolecular prodrug of doxorubicin conjugated to a biodegradable cyclotriphosphazene bearing a tetrapeptide,” Bioorganic Med. Chem. Lett., vol. 15, no. 15, pp. 3576–3579, 2005. [27 ] Y. J. Jun et al., “Thermoresponsive micelles from oligopeptide-grafted cyclotriphosphazenes,” Angew. Chemie - Int. Ed., vol. 45, no. 37, pp. 6173–6176, 2006. [28 ] P. Castera et al., “An answer to the SPIRO versus ANSA dilemma in cyclophosphazenes. Part VII. Neither SPIRO nor ANSA: the BINOdicyclotriphosphazenes, N3P3Cl5 [HN(CH2)nNH] Cl5P3N3,” Inorganica Chim. Acta, vol. 108, no. 1, pp. 29–33, 1985. [29 ] X. Q. Sournies, F., Labarre, J. F., Spreafico, F., Filippeschi, S., & Jin, “Atempts at the production of more selective antitumourals part ii. The antineoplastic activity of cyclophosphazenes linked to spermine, vol. 147, pp. 161–173, 1986. [30 ] H. Alkubaisi, H. G. Parkes, and R. A. Shaw, “Phosphorus-nitrogen compounds. Part 58. The reactions of hexachlorocyclotriphosphazatriene with ethane-, 1,3-propane- and 1,4-butane-diols. Spiro, ansa, bridged and dangling derivatives and their 31P and 1H nuclear magnetic resonance spectra,” Heterocycles,vol. 28, no. 1, pp. 347–358, 1989. [31 ] I. Porwolik-Czomperlik, K. Brandt, T. A. Clayton, D. B. Davies, R. J. Eaton, and R. A. Shaw, “Diastereoisomeric singly bridged cyclophosphazene-macrocyclic compounds,” Inorg. Chem., vol. 41, no. 19, pp. 4944–4951, 2002. [32 ] (a) El Murr, N.; Lahana, R.; Labarre, J. F.; Declercq, J. P., “Phosphorus-Nitrogen compounds. Spectroscopic investigation of cyclophosphazenes” J Mol Struct, 117, 73-85, 1984. (b) J. F. Labarre,. “Spectroscopic investigation of cyclophosphazenes,”TopCurrChem, 129, 173–230, 1985. [33 ] (a) R. A. Shaw, “The Phosphazenes–Structural Parameters and Their Relationships To Physical and Chemical Properties,” Phosphorous Sulfur Relat. Elem., vol. 28, no. 1–2, pp. 99–128, 1986. (b) R. A. Shaw, "The reactions of phosphazenes with difunctional and polyfunctional nucleophilic reagents, "Phosphorus Sulfur and Silicon and the Related Elements, vol. 45, no. 1-2, pp, 103-136, 1989. [34 ] H. R. Allcock, U. Diefenbach, and S. R. Pucher, “New Mono- and Trispirocyclotriphosphazenes from the Reactions of (NPCl2)3 with Aromatic Ortho Dinucleophiles,” Inorg. Chem., vol. 33, no. 14, pp. 3091–3095, 1994. [35 ] K. Brandt et al., “Host-guest complex dependent regioselectivity in substitution reactions of chlorocyclotriphosphazene-containing PNP-crowns with alkylenediamines,” J. Am. Chem. Soc., vol. 119, no. 5, pp. 1143–1144, 1997. [36 ] S. Ture.Phosphorus-nitrogen compounds: Reinvestigation of the reactions of hexachlorocyclotriphosphazene with 1,4-butane- and 1,6-hexane-diols—NMR studies of the products, ”Phosphorous Sulfur Relat. Elem., vol.191, no. 8, pp. 1174-1182, 2016. [37 ] C. Plato and A. R. Glasgow, “Differential Scanning Calorimetry as a General Method for Determining the Purity and Heat of Fusion of High-Purity Organic Chemicals. Application to 95 Compounds,” Anal. Chem., vol. 41, no. 2, pp. 330–336, 1969. [38 ] R. B. Cassel and R. Behme, “A DSC method to determine the relative stability of pharmaceutical polymorphs,” Am. Lab., vol. 36, no. 16, pp. 0–2, 2004. [39 ] G. Knothe and R. O. Dunn, “A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry,” J Am Oil Chem Soc, vol. 86, pp. 843–856, 2009. [40 ] Particle Analytical, “Differential Scanning Calorimetry (DSC) theory.” [Online]. Available: http://particle.dk/methods-analytical-laboratory/dsc-differential-scanning-calorimetry-2/dsc-theory/. [Accessed: 16-Nov-2017]. [41 ] R. Gurbanov and F. Yıldız, “Molecular profile of oral probiotic bacteria to be used with functional foods,” J. Food Heal. Sci., vol. 3, pp. 117–131, 2017.
Birincil Dil en
Konular Kimya ve Kimya Mühendisliği
Yayımlanma Tarihi Haziran 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Orcid: 0000-0002-8554-903X
Yazar: Murat Tuna
Kurum: Sakarya University Art and Science Faculty Department of Chemistry
Ülke: Turkey


Orcid: 0000-0001-8637-5580
Yazar: Sedat Türe (Sorumlu Yazar)
Kurum: Bilecik Şeyh Edebali University Art and Science Faculty Department of Chemistry
Ülke: Turkey


Orcid: 0000-0002-5293-6447
Yazar: Rafig Gurbanov
Kurum: Bilecik Şeyh Edebali University Art and Science Faculty Molucular Biology and Genetics Department
Ülke: Turkey


Bibtex @araştırma makalesi { saufenbilder384736, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya Üniversitesi}, year = {2018}, volume = {22}, pages = {1033 - 1047}, doi = {10.16984/saufenbilder.384736}, title = {Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products}, key = {cite}, author = {Türe, Sedat and Gurbanov, Rafig and Tuna, Murat} }
APA Tuna, M , Türe, S , Gurbanov, R . (2018). Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products. Sakarya University Journal of Science, 22 (3), 1033-1047. DOI: 10.16984/saufenbilder.384736
MLA Tuna, M , Türe, S , Gurbanov, R . "Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products". Sakarya University Journal of Science 22 (2018): 1033-1047 <http://www.saujs.sakarya.edu.tr/issue/30828/384736>
Chicago Tuna, M , Türe, S , Gurbanov, R . "Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products". Sakarya University Journal of Science 22 (2018): 1033-1047
RIS TY - JOUR T1 - Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products AU - Murat Tuna , Sedat Türe , Rafig Gurbanov Y1 - 2018 PY - 2018 N1 - doi: 10.16984/saufenbilder.384736 DO - 10.16984/saufenbilder.384736 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1033 EP - 1047 VL - 22 IS - 3 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.384736 UR - http://dx.doi.org/10.16984/saufenbilder.384736 Y2 - 2018 ER -
EndNote %0 Sakarya University Journal of Science Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products %A Murat Tuna , Sedat Türe , Rafig Gurbanov %T Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products %D 2018 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 22 %N 3 %R doi: 10.16984/saufenbilder.384736 %U 10.16984/saufenbilder.384736
ISNAD Tuna, Murat , Türe, Sedat , Gurbanov, Rafig . "Reactions of cyclochlorotriphosphazatriene with 1-amino-2-propanol. Calorimetric and spectroscopic investigations of the derived products". Sakarya University Journal of Science 22 / 3 (Haziran 2018): 1033-1047. http://dx.doi.org/10.16984/saufenbilder.384736