Year 2016, Volume 20, Issue 1, Pages 1 - 6 2016-04-01

Performance of svm, k-nn and nbc classifiers for text-independent speaker identification with and without modelling through merging models
Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı

Yussouf Nahayo [1] , Seçkin Arı [2]

439 797

This paper proposes some methods of robust text-independent speaker identification based on Gaussian Mixture Model
(GMM). We implemented a combination of GMM model with a set of classifiers such as Support Vector Machine
(SVM), K-Nearest Neighbour (K-NN), and Naive Bayes Classifier (NBC). In order to improve the identification rate,
we developed a combination of hybrid systems by using validation technique. The experiments were performed on the
dialect DR1 of the TIMIT corpus. The results have showed a better performance for the developed technique compared
to the individual techniques.

Bu çalışma Gaussian Mixture Model tabanlı metin-bağımsız konuşmacı tanıma yöntemleri sunar. GMM model ile
Support Vector Machine, K-nearest Neighbour ve Naive Bayes sınıflandırıcı gibi sınıflandırıcıların kombinasyonu
gerçekleştirilmiştir. Tanıma oranını iyileştirmek için, doğrulama yöntemi kullanarak hibrid sistemlerin
kombinasyonunu geliştirdik. Deneyler TIMIT corpus’ un DR1 lehçesi üzerine yapılmıştır. Sonuçlar ayrı ayrı
yöntemlerle karılaştırıldığında geliştirilen yöntemle daha iyi başarım göstermiştir.

  • D. A. N. R.Amami, “An Empirical Comparison
  • of SVM and Some Supervised Learning
  • Algorithms for Vowel recognition”,
  • International Journal of Intelligent Information
  • Processing IJIIP, 2012.
  • B.S. Atal, “Automatic Recognition of Speaker
  • from Their Voices”, Proceedings of the IEEE,
  • Vol. 64, No. 4, pp 460-475, 1976
  • W. M. Campbell, D. E. Sturim, D. A. Reynolds,
  • and A. Solomon off, “SVM based speaker
  • verification using a GMM supervector kernel and
  • Without modelling GMM
  • Classifiers SVM K-NN NB
  • Identification rate
  • (%)
  • 87 92
  • Y. Nahayo, S. Arı Performance of svm, k-nn and nbc classifiers for text
  • independent speaker identification with and without
  • modelling through merging models
  • SAÜ Fen Bil Der 20. Cilt, 1. Sayı, s. 1-6, 2016
  • NAP variability compensation”, Proc. Int. Conf.
  • Acoustics, Speech, and Signal Processing, 2006.
  • D. Reynolds and R. Rose, "Robust textindependent speaker identification using
  • Gaussian mixture speaker models, " IEEE Trans.
  • Speech Audio Proc., vol. 3, no. 1, pp. 72–83,
  • -
  • D. Ben Ayed Mezghani, S. Zribi Boujelbene et
  • N. Ellouze, "Evaluation of SVM kernels function
  • and conventional machine learning algorithms
  • for Speaker Identification Task," International
  • Journal of Hybrid Information Technology
  • (IJHIT), vol. 3, pp. 2 3-34, 2010.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, "Application of Combining Classifiers
  • for Text-Independent Speaker Identification,"
  • the 16th IEEE International Conference on
  • Electronics, Circuits, and Systems ICECS,
  • Hammamet-Tunisie, pp. 723-726, 2009.
  • R. Djemili, M. Bedda and H. Bourouba, "A
  • Hybrid GMM/SVM System for Text
  • Independent Speaker Identification,"
  • International Journal of Computer and
  • Information Science and Engineering, vol. 1, pp.
  • -8, 2007.
  • D. Neiberg “Text Independent Speaker
  • Verification Using Adapted Gaussian Mixture
  • Models", Centre for Speech Technology (CTT)
  • Department of Speech, Music and Hearing KTH,
  • Stockholm, Sweden 2001-12-11.
  • S. Zribi Boujelbene, D. Ben Ayed Mezghan et N.
  • Ellouze, “Support Vector Machines approaches
  • and its application to speaker identification," 3rd
  • IEEE International Conference on Digital
  • Ecosystems and Technologies DEST, pp. 662-
  • , 2009.
  • I. Ayed, “Stratégies de fusion de paramètres pour
  • une tâche d'identification du locuteur en mode
  • indépendant du texte : Application sur le corpus
  • NTIMIT.TAIMA”, Hammamet-Tunisie 2011.
  • L. Lam et C.Y. Suen. “Application of Majority
  • Voting to Pattern Recognition: An Analysis of Its
  • Behavior and Performance”, IEEE Transactions
  • on Systems, Man Cybernetics, pp. 553-568,
  • -
  • K. S. Durgesh, and B. Lekha, “Data classification
  • using support vector machine.” Journal of
  • Theoretical and Applied Information
  • Technology, 12(1), 1-7, 2010
  • H. Y. Chang, A. L. Kong, and L. Haizhou, “An
  • SVM Kernel With GMM-Supervector Based on
  • the Bhattacharyya Distance for Speaker
  • Recognition”, v.6, pp. 1300-1312, 2010
Primary Language tr
Subjects Engineering
Published Date Nisan 2016
Journal Section Research Articles
Authors

Author: Yussouf Nahayo

Author: Seçkin Arı

Bibtex @research article { saufenbilder221210, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {Sakarya University}, year = {2016}, volume = {20}, pages = {1 - 6}, doi = {10.16984/saufenbilder.00295}, title = {Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı}, key = {cite}, author = {Nahayo, Yussouf and Arı, Seçkin} }
APA Nahayo, Y , Arı, S . (2016). Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı. Sakarya University Journal of Science, 20 (1), 1-6. Retrieved from http://www.saujs.sakarya.edu.tr/issue/20706/221210
MLA Nahayo, Y , Arı, S . "Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı". Sakarya University Journal of Science 20 (2016): 1-6 <http://www.saujs.sakarya.edu.tr/issue/20706/221210>
Chicago Nahayo, Y , Arı, S . "Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı". Sakarya University Journal of Science 20 (2016): 1-6
RIS TY - JOUR T1 - Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı AU - Yussouf Nahayo , Seçkin Arı Y1 - 2016 PY - 2016 N1 - DO - T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 1 EP - 6 VL - 20 IS - 1 SN - 1301-4048-2147-835X M3 - UR - Y2 - 2015 ER -
EndNote %0 Sakarya University Journal of Science Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı %A Yussouf Nahayo , Seçkin Arı %T Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı %D 2016 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 20 %N 1 %R %U
ISNAD Nahayo, Yussouf , Arı, Seçkin . "Birleşik modellemeli ve modellemesiz metin-bağımsız konuşmacı tanıma için SVM, K-NN ve NBC sınıflandırıcıların başarımı". Sakarya University Journal of Science 20 / 1 (April 2016): 1-6.