Year 2020, Volume 24 , Issue 1, Pages 67 - 77 2020-02-01

Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs

Billur Deniz KARAHAN [1]


The nanostructured materials represent the center of fundamental advances to design new era electrodes for high energy density batteries. Especially, one-dimensional nanomaterials are recognized as a solution due to their large surface area, short diffusion distance and high volume accommodation ability. In this sense, first in literature a comparative study has been done to examine the electrochemical performances of differently fabricated transition metal oxide molybdate powders: lithium storage capabilities of nickel-cobalt-molybdate composite is compared to that of the cobalt oxide decorated nickel molybdate powders. To measure the effect of cobalt atom, bare nickel molybdate powders have been also fabricated and tested. The lithiation mechanism of these electrodes are discussed based on the cyclic voltammetry curvatures and the SEI layer formation on the electrodes and the electrode/electrolyte stability upon cycling are analyzed following the electrochemical impedance spectroscopy test results (after 1st,2nd and 4th cycles). The outcome of characterizations reveal that the addition of cobalt changes the powder morphology and improves the electrochemical performance of the electrode. Among three samples, the cobalt oxide decorated nickel molybdate performs higher retention and rate performance since the top layer promotes more stable electrode/electrolyte interface providing a capacity of 290 mAh/g after 100 cycles. The rate performance of the sample is also found promising, the electrode delivers 200 mAh/g even at 400mA/g rate.

Metal molybdates, lithium ion batteries, hydrothermal method, anode
  • [1] C. T. Cherian, M. V. Reddy, S. C. Haur, B. V. R. Chowdari “Interconnected Network of CoMoO4 Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries,” ACS Appl. Mater. Interfaces, vol. 5, pp. 918−923, 2013.
  • [2] Q.Yang, S.-Y. Lin, “Rationally designed nanosheet-based CoMoO4–NiMoO4 nanotubes for high-performance electrochemical electrodes,” RSC. Adv., vol.6, pp. 10520-10526, 2016.
  • [3] N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, “Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe),” J. Power Sources, vol. 127, pp. 76–84, 2004.
  • [4] P. R. Jothi, K. Shanthi, R. R. Salunkhe, M. Pramanik, V. Malgras, S. M. Alshehri, Y. Yamauchi “Synthesis and Characterization of α-NiMoO4 Nanorods for Supercapacitor Application,” Eur. J. Inorg. Chem., pp. 3694–3699, 2015.
  • [5] S.-S. Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp. 249–256, 2002.
  • [6] 6. D. Zhang, R. Zhang, C. Xu, Y. Fan, B. Yuan, “Microwave-assisted solvothermal synthesis of nickel molybdate nanosheets as a potential catalytic platform for NADH and ethanol sensing” Sens. Actuators B, vol. 206, pp. 1–7, 2015.
  • [7] H. Wan, J. Jiang, X. Ji, L. Miao, L. Zhang, K. Xu, H. Chen, Y. Ruan, “Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors,” Mater. Lett. Vol. 108, pp. 164–167, 2013.[8] 8. M. C. Liu, L. B. Kong, C. Lu, X. J. Ma, X. M. Li, Y. C. Luo, L. Kang, “Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors,” J. Mater. Chem. A, vol.1, pp. 1380–1387, 2013.
  • [9] S. Vidya, S. Solomon, J. K. Thomas, “Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties,” J. Electroceramics vol.36, pp.142-149, 2016.
  • [10] M. P.-Kalamuei, M. M.-Kamazani, M. S.-Niasari,S. M. H.-Mashkani, “A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application,” Ultrason. Sonochem., vol 23, pp.246-256, 2015.
  • [11] M. Devi, U. V. Varadaraju, “Lithium insertion in lithium iron molybdate,” Electrochem. commun., vol.18,pp.112-115, 2012.
  • [12] M. Zhou, X. Jiang, C. Li, Z. Lin, J. Yao, Y. Wu, “The Double Molybdate Rb2Ba(MoO4)2: Synthesis, Crystal Structure, Optical, Thermal, Vibrational Properties, and Electronic Structure,” Z. Anorg. Allg. Chem., vol.641, 2321-2525, 2015.
  • [13] W. Xiao, J. S. Chen, C. M. Li, R. Xu, X. W. Lou “Synthesis, Characterization, and Lithium Storage Capability of AMoO4 (A = Ni, Co) Nanorods, ” Chem. Mater., vol. 22, pp.746–754, 2010.
  • [14] X. Li, J. Bai, H. Wang, “Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage,” J Solid State Electrochem., vol. 22, pp. 2659–2669, 2018.
  • [15] B. Wang, S. Li, X. Wu, W. Tian, J. Liu, M. Yu “Integration of network-like porous NiMoO4 nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage,” J. Mater. Chem. A, vol.3, pp. 13691-13698, 2015.
  • [16] D. Lyu, L. Zhang, H. Wei, H. Geng, H. Gu “Synthesis of graphene wrapped porous CoMoO4 nanospheres as high-performance anodes for rechargeable lithium-ion batteries” RSC Adv., vol. 7, pp. 51506–51511, 2017.
  • [17] J. Xu, S. Z. Gu, L. Fan, P. Xu and B. G. Lu, “Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries,” Electrochim. Acta, vol. 196,pp. 125–130, 2016.
  • [18] K. Schuh, “Hydrothermal synthesis of molybdenum based oxides for the application in catalysis,” Dissertation, Karlsruher Institut für Technologie, 2014.
  • [19] Y. Ding, Y. Wan, Y.-L. Min, W. Zhang, S.-H. Yu “General Synthesis and Phase Control of Metal Molybdate Hydrates MMoO4·nH2O (M:Co, Ni, Mn and n:0, 3/4, 1) Nano/Microcrystals by a Hydrothermal Approach: Magnetic, Photocatalytic, and Electrochemical Properties,” Inorganic Chem., vol.47, pp.7813-7823, 2008.
  • [20] X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, Q. Guo, “Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries,” Appl. Surface Science, vol. 434 pp.49–56, 2018.
  • [21] S.-S.Kim, S. Ogura, H. Ikuta, Y. Uchimoto, M. Wakihara, “Reaction mechanisms of MnMoO4 for high capacity anode material of Li secondary battery,” Solid State Ionics, vol. 146, pp.249–256, 2002.
  • [22] S. Denis, E. Baudrin, M. Touboul, J.-M. Tarascon, “Synthesis and Electrochemical Properties of Amorphous Vanadates of General Formula  RVO4 (R = In, Cr, Fe, Al, Y) vs. Li,” J. Electrochem. Soc., vol.144, pp.4099-4109, 1997.
  • [23] C. Tan, J. Cao, A. M. Khattak, F. Cai, B. Jiang, G. Yang, S. Hu “High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries,” J. Power Sources, vol. 270, pp. 28-33, 2014.
Primary Language en
Subjects Metallurgy and Metallurgical Engineering
Published Date February 2020
Journal Section Research Articles
Authors

Orcid: 0000-0002-7839-2222
Author: Billur Deniz KARAHAN (Primary Author)
Institution: İSTANBUL MEDİPOL ÜNİVERSİTESİ
Country: Turkey


Dates

Application Date : July 29, 2019
Acceptance Date : October 10, 2019
Publication Date : February 1, 2020

Bibtex @research article { saufenbilder598141, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2020}, volume = {24}, pages = {67 - 77}, doi = {10.16984/saufenbilder.598141}, title = {Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs}, key = {cite}, author = {KARAHAN, Billur Deniz} }
APA KARAHAN, B . (2020). Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. Sakarya University Journal of Science , 24 (1) , 67-77 . DOI: 10.16984/saufenbilder.598141
MLA KARAHAN, B . "Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs". Sakarya University Journal of Science 24 (2020 ): 67-77 <http://www.saujs.sakarya.edu.tr/en/issue/49430/598141>
Chicago KARAHAN, B . "Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs". Sakarya University Journal of Science 24 (2020 ): 67-77
RIS TY - JOUR T1 - Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs AU - Billur Deniz KARAHAN Y1 - 2020 PY - 2020 N1 - doi: 10.16984/saufenbilder.598141 DO - 10.16984/saufenbilder.598141 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 67 EP - 77 VL - 24 IS - 1 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.598141 UR - https://doi.org/10.16984/saufenbilder.598141 Y2 - 2019 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs %A Billur Deniz KARAHAN %T Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs %D 2020 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 24 %N 1 %R doi: 10.16984/saufenbilder.598141 %U 10.16984/saufenbilder.598141
ISNAD KARAHAN, Billur Deniz . "Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs". Sakarya University Journal of Science 24 / 1 (February 2020): 67-77 . https://doi.org/10.16984/saufenbilder.598141
AMA KARAHAN B . Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. SAUJS. 2020; 24(1): 67-77.
Vancouver KARAHAN B . Comparative Study about Differently Structured Transitional Metal Molybdates as Negative Electrodes for LIBs. Sakarya University Journal of Science. 2020; 24(1): 77-67.