Year 2020, Volume 24 , Issue 1, Pages 151 - 160 2020-02-01

Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization

Ertan Ermiş [1] , Ecem Poyraz [2] , Enes Dertli [3] , Mustafa Tahsin Yılmaz [4]


Response surface methodology was used to determine the exopolysaccharide production of Lactobacillus brevis E25. The effects of three variables, temperature (30, 36 and 42 °C), incubation time (18, 33 and 48 h) and initial pH of growth medium (4.5, 5.5 and 6.5) were studied. Under optimum growth conditions, the amount of exopolysaccharide derived from Lactobacillus brevis E25 ranged from 10 to 35 gL-1. The size of EPS molecules ranged from 105 to 107 Da. Infra red spectrum analysis showed characteristics absorption peaks indicating the presence of -OH, C=O and C-H groups. Furthermore, only glucose was detected as monosaccharide in exopolysaccharide structure, revealing that the structure of exopolysaccharide is a homopolymeric glucan type. Based on the differential scanning calorimeter thermograms, exopolysaccharide’s melting temperature was observed around 116 °C.
Lactic acid bacteria, exopolysaccharide, response surface methodology, molecular characterization
  • [1] A. T. Adesulu-Dahunsi, A. I. Sanni, and K. Jeyaram, “Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44,” LWT - Food Sci. Technol., vol. 87, pp. 432–442, 2018.
  • [2] Y. Abid, A. Casillo, H. Gharsallah, I. Joulak, R. Lanzetta, M. M. Corsaro, H. Attia, and S. Azabou, “Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria,” Int. J. Biol. Macromol., 2017.
  • [3] L. Ai, Q. Guo, H. Ding, B. Guo, W. Chen, and S. W. Cui, “Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk,” Food Hydrocoll., vol. 56, pp. 134–143, 2016.
  • [4] W. Di, L. Zhang, S. Wang, H. Yi, X. Han, and R. Fan, “Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk,” Carbohydr. Polym., vol. 171, pp. 307–315, 2017.
  • [5] M. Korakli, M. G. Gänzle, and R. F. Vogel, “Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis,” J. Appl. Microbiol., vol. 92, no. 5, pp. 958–965, 2002.
  • [6] S. Tsuneda, H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata, “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface,” FEMS Microbiol. Lett., vol. 223, no. 2, pp. 287–292, 2003.
  • [7] E. N. Karasu and E. Ermis, “Determination of the effect of exopolysaccharide (EPS) from Lactobacillus brevis E25 on adhesion of food powders on the surfaces, using the centrifuge technique,” J. Food Eng., vol. 242, pp. 106–114, 2019.
  • [8] E. Dertli, I. J. Colquhoun, G. L. Côté, G. Le Gall, and A. Narbad, “Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25,” Food Chem., vol. 242, no. March 2017, pp. 45–52, 2018.
  • [9] E. Dertli, I. J. Colquhoun, A. P. Gunning, R. J. Bongaerts, G. Le Gall, B. B. Bonev, M. J. Mayer, and A. Narbad, “Structure and biosynthesis of two exopolysaccharides produced by lactobacillus johnsonii FI9785,” J. Biol. Chem., vol. 288, no. 44, pp. 31938–31951, 2013.
  • [10] A. Yilmaz, F. Bozkurt, P. K. Cicek, E. Dertli, M. Z. Durak, and M. T. Yilmaz, “A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein???nanofiber mats loaded with curcumin,” Innov. Food Sci. Emerg. Technol., vol. 37, pp. 74–83, 2016.
  • [11] M. Ayyash, B. Abu-Jdayil, F. Hamed, and R. Shaker, “Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese,” LWT - Food Sci. Technol., vol. 87, pp. 423–431, 2018.
  • [12] F. Mozzi, G. Savoy de Giori, and G. Font de Valdez, “UDP-galactose 4-epimerase: A key enzyme in exopolysaccharide formation by Lactobacillus casei CRL 87 in controlled pH batch cultures,” J. Appl. Microbiol., vol. 94, no. 2, pp. 175–183, 2003.
  • [13] B. Degeest, F. Mozzi, and L. De Vuyst, “Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations,” Int. J. Food Microbiol., vol. 79, no. 3, pp. 161–174, 2002.
  • [14] E. Dertli, E. Mercan, M. Arici, M. T. Yilmaz, and O. Sağdiç, “Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics,” LWT - Food Sci. Technol., vol. 71, pp. 116–124, 2016.
  • [15] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, 1956.
  • [16] M. Polak-Berecka, A. Choma, A. Waśko, S. Górska, A. Gamian, and J. Cybulska, “Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources,” Carbohydr. Polym., vol. 117, pp. 501–509, 2015.
  • [17] K. K. T. Goh, R. D. Haisman, and H. Singh, “Examination of exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus using confocal laser scanning and scanning electron microscopy techniques,” J. Food Sci., vol. 70, no. 4, 2005.
  • [18] H. İspirli and E. Dertli, “Isolation and identification of exopolysaccharide producer lactic acid bacteria from Turkish yogurt,” J. Food Process. Preserv., vol. 42, no. 1, 2018.
  • [19] S. Mende, H. Rohm, and D. Jaros, “Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products,” International Dairy Journal, vol. 52. pp. 57–71, 2016.
  • [20] A. S. Demirci, I. Palabiyik, D. D. Altan, D. Apaydın, and T. Gumus, “Yield and rheological properties of exopolysaccharide from a local isolate: Xanthomonas axonopodis pv. vesicatoria,” Electron. J. Biotechnol., vol. 30, pp. 18–23, 2017.
  • [21] P. Manochai, Y. Phimolsiripol, and P. Seesuriyachan, “Response surface optimization of exopolysaccharide production from sugarcane juice by Lactobacillus confusus TISTR 1498,” Chiang Mai Univ. J. Nat. Sci., vol. 13, no. 1, pp. 425–438, 2014.
  • [22] C. H. Shu and M. Y. Lung, “Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures,” Process Biochem., vol. 39, no. 8, pp. 931–937, 2004.
  • [23] F. Gancel and G. Novel, “Exopolysaccharide Production by Streptococcus salivarius ssp. thermophilus Cultures. 1. Conditions of Production,” J. Dairy Sci., vol. 77, no. 3, pp. 685–688, 1994.
  • [24] R. Xu, S. Ma, Y. Wang, L. Liu, and P. Li, “Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT,” African J. Microbiol. Res., vol. 4, no. 9, pp. 783–795, 2010.
  • [25] W. Wongsuphachat, A. H-Kittikun, and S. Maneerat, “Optimization of exopolysaccharides production by Weissella confusa NH 02 isolated from thai fermented sausages,” Songklanakarin J. Sci. Technol., vol. 32, no. 1, pp. 27–35, 2010.
  • [26] Chintana Tayuan, “Growth and exopolysaccharide production by Weissella sp. from low-cost substitutes for sucrose,” African J. Microbiol. Res., vol. 5, no. 22, pp. 3693–3701, 2011.
  • [27] L. De Vuyst, F. De Vin, F. Vaningelgem, and B. Degeest, “Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 687–707.
  • [28] B. Degeest, F. Vaningelgem, and L. De Vuyst, “Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria,” in International Dairy Journal, 2001, vol. 11, no. 9, pp. 747–757.
  • [29] L. Gamar-Nourani, K. Blondeau, and J. M. Simonet, “Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83,” J. Appl. Microbiol., vol. 85, no. 4, pp. 664–672, 1998.
  • [30] P. Seesuriyachan, A. Kuntiya, P. Hanmoungjai, and C. Techapun, “Exopolysaccharide production by lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: The effect of peptone, yeast extract and beef extract,” Songklanakarin J. Sci. Technol., vol. 33, no. 4, pp. 379–387, 2011.
  • [31] M. E. Esgalhado, J. C. Roseiro, and M. T. Amaral-Collaço, “Interactive effects of pH and temperature on cell growth and polymer production by Xanthomonas campestris,” Process Biochem., vol. 30, no. 7, pp. 667–671, 1995.[32] L. Qiang, L. Yumei, H. Sheng, L. Yingzi, S. Dongxue, H. Dake, W. Jiajia, Q. Yanhong, and Z. Yuxia, “Optimization of fermentation conditions and properties of an exopolysaccharide from Klebsiella sp. H-207 and application in adsorption of hexavalent chromium,” PLoS One, vol. 8, no. 1, p. e53542, 2013.
  • [33] Z. Chen, J. Shi, X. Yang, B. Nan, Y. Liu, and Z. Wang, “Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation,” Int. Dairy J., vol. 43, pp. 15–21, 2015.
  • [34] M. Miao, C. Huang, X. Jia, S. W. Cui, B. Jiang, and T. Zhang, “Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002,” Food Hydrocoll., vol. 50, pp. 37–43, 2015.
  • [35] Y. Wang, Z. Ahmed, W. Feng, C. Li, and S. Song, “Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir,” Int. J. Biol. Macromol., vol. 43, no. 3, pp. 283–288, 2008.
  • [36] A. N. Hassan, J. F. Frank, and K. B. Qvist, “Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy,” J. Dairy Sci., vol. 85, no. 7, pp. 1705–1708, 2002.
Primary Language en
Subjects Food Science and Technology
Published Date February 2020
Journal Section Research Articles
Authors

Orcid: 0000-0002-1461-7357
Author: Ertan Ermiş (Primary Author)
Institution: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0000-0000-0000
Author: Ecem Poyraz

Orcid: 0000-0002-0421-6103
Author: Enes Dertli

Orcid: 0000-0002-5385-8858
Author: Mustafa Tahsin Yılmaz

Dates

Application Date : March 28, 2019
Acceptance Date : October 31, 2019
Publication Date : February 1, 2020

Bibtex @research article { saufenbilder545929, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2020}, volume = {24}, pages = {151 - 160}, doi = {10.16984/saufenbilder.545929}, title = {Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization}, key = {cite}, author = {Ermiş, Ertan and Poyraz, Ecem and Dertli, Enes and Yılmaz, Mustafa Tahsin} }
APA Ermiş, E , Poyraz, E , Dertli, E , Yılmaz, M . (2020). Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. Sakarya University Journal of Science , 24 (1) , 151-160 . DOI: 10.16984/saufenbilder.545929
MLA Ermiş, E , Poyraz, E , Dertli, E , Yılmaz, M . "Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization". Sakarya University Journal of Science 24 (2020 ): 151-160 <http://www.saujs.sakarya.edu.tr/en/issue/49430/545929>
Chicago Ermiş, E , Poyraz, E , Dertli, E , Yılmaz, M . "Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization". Sakarya University Journal of Science 24 (2020 ): 151-160
RIS TY - JOUR T1 - Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization AU - Ertan Ermiş , Ecem Poyraz , Enes Dertli , Mustafa Tahsin Yılmaz Y1 - 2020 PY - 2020 N1 - doi: 10.16984/saufenbilder.545929 DO - 10.16984/saufenbilder.545929 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 151 EP - 160 VL - 24 IS - 1 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.545929 UR - https://doi.org/10.16984/saufenbilder.545929 Y2 - 2019 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization %A Ertan Ermiş , Ecem Poyraz , Enes Dertli , Mustafa Tahsin Yılmaz %T Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization %D 2020 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 24 %N 1 %R doi: 10.16984/saufenbilder.545929 %U 10.16984/saufenbilder.545929
ISNAD Ermiş, Ertan , Poyraz, Ecem , Dertli, Enes , Yılmaz, Mustafa Tahsin . "Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization". Sakarya University Journal of Science 24 / 1 (February 2020): 151-160 . https://doi.org/10.16984/saufenbilder.545929
AMA Ermiş E , Poyraz E , Dertli E , Yılmaz M . Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. SAUJS. 2020; 24(1): 151-160.
Vancouver Ermiş E , Poyraz E , Dertli E , Yılmaz M . Optimization of exopolysaccharide production of Lactobacillus brevis E25 using RSM and characterization. Sakarya University Journal of Science. 2020; 24(1): 160-151.