Year 2020, Volume 24 , Issue 1, Pages 178 - 182 2020-02-01

Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters

Berrak ÖZGÜR [1]


In this paper, a special case for a delayed neural field model is considered. After constructing its characteristic equation a stability analysis is made. Using Routh-Hurwitz criterion, some conditions for characteristic equation are given for the stability of the system.

delay differential equations, characteristic equation, stability analysis
  • [1] H. Wilson and J. Cowan, “A Mathematical theory of the functional dynamics of cortical and thalamic nervous tissue”, Biological Cybernetics. vol. 13, no. 2, pp. 55-80, 1973.
  • [2] S. I. Amari, “Dynamics of pattern formation in lateral-inhibition type neural fields,” Biological Cybernetics. vol. 27, no. 2, pp. 77-87, 1977.
  • [3] S. Coombes, “Waves, bumps, and patterns in neural field theories,” Biological Cybernetics, vol. 93, no. 2, pp 91-108, 2005.
  • [4] S. Coombes, N.A. Venkov, L. Shiau, L. Bojak, D.T.J. Liley, C.R. Laing, “Modeling electrocortical activity through improved local approximations of integral neural field equations,” Phys. Rev. E 76, 051901, 2007.
  • [5] C. Huang and S. Vandewalle, “An analysis of delay dependent stability for ordinary and partial differential equations with fixed and distributed delays,” SIAM Journal on Scientific Computing, vol. 25, no. 5, pp.1608-1632, 2004.
  • [6] S. A. Van Gils, S. G. Janssens, Yu. A. Kuznetsov and S. Visser, “On local bifurcations in neural field models with transmission delays,” Journal of Mathematical Biology, vol. 66, no. 4, pp 837-887, 2013.
  • [7] R. Veltz, “Interplay between synaptic delays and propagation delays in neural field equations,” Siam Journal of Applied Dynamical Systems, vol. 12, no. 3, pp. 1566-1612, 2013.
  • [8] R. Veltz and O. Faugeras, “Stability of the stationary solutions of neural field equations with propagation delay,” Journal of Mathematical Neuroscience, 1,1 ,2011.
  • [9] R. Veltz and O. Faugeras, “A center manifold result for delayed neural fields equations,” Siam Journal on Mathematical Analysis, vol. 45, no. 3, pp. 1527-1562, 2013.
  • [10] G. Faye and O. Faugeras, “Some theoretical and numerical results for delayed neural field equations,” Physica D: Nonlinear Phenomena, vol. 239, no. 9, pp. 561-578, 2010.
  • [11] B. Özgür and A. Demir, “Some stability charts of a neural field model of two neural populations,” Communications in Mathematics and Applications, vol. 7, no. 2, 2016.
  • [12] B. Özgür, A. Demir and S. Erman, “A note on the stability of a neural field model,” Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018.
  • [13] B. Özgür and A. Demir, “On the stability of two neuron populations interacting with each other,” Rocky Mountain Journal of Mathematics, vol. 48, no. 7, 2018.
  • [14] F. M. Atay and A. Hutt, “Stability and bifurcations in neural fields with finite propagation speed and general connectivity,” Siam Journal on Mathematical Analysis, vol. 5, no. 4, pp. 670-698, 2006.
  • [15] J. Forde and P. Nelson, “Applications of Sturm sequences to bifurcation analysis of delay differential equation models,” Journal of Mathematical Analysis and Applications, 300, pp. 273-284, 2004.
Primary Language en
Subjects Mathematics
Published Date February 2020
Journal Section Research Articles
Authors

Orcid: 0000-0002-9709-7376
Author: Berrak ÖZGÜR (Primary Author)
Institution: İZMİR DEMOCRACY UNIVERSITY
Country: Turkey


Dates

Application Date : February 3, 2019
Acceptance Date : December 1, 2019
Publication Date : February 1, 2020

Bibtex @research article { saufenbilder521545, journal = {Sakarya University Journal of Science}, issn = {1301-4048}, eissn = {2147-835X}, address = {}, publisher = {Sakarya University}, year = {2020}, volume = {24}, pages = {178 - 182}, doi = {10.16984/saufenbilder.521545}, title = {Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters}, key = {cite}, author = {ÖZGÜR, Berrak} }
APA ÖZGÜR, B . (2020). Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters. Sakarya University Journal of Science , 24 (1) , 178-182 . DOI: 10.16984/saufenbilder.521545
MLA ÖZGÜR, B . "Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters". Sakarya University Journal of Science 24 (2020 ): 178-182 <http://www.saujs.sakarya.edu.tr/en/issue/49430/521545>
Chicago ÖZGÜR, B . "Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters". Sakarya University Journal of Science 24 (2020 ): 178-182
RIS TY - JOUR T1 - Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters AU - Berrak ÖZGÜR Y1 - 2020 PY - 2020 N1 - doi: 10.16984/saufenbilder.521545 DO - 10.16984/saufenbilder.521545 T2 - Sakarya University Journal of Science JF - Journal JO - JOR SP - 178 EP - 182 VL - 24 IS - 1 SN - 1301-4048-2147-835X M3 - doi: 10.16984/saufenbilder.521545 UR - https://doi.org/10.16984/saufenbilder.521545 Y2 - 2019 ER -
EndNote %0 Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters %A Berrak ÖZGÜR %T Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters %D 2020 %J Sakarya University Journal of Science %P 1301-4048-2147-835X %V 24 %N 1 %R doi: 10.16984/saufenbilder.521545 %U 10.16984/saufenbilder.521545
ISNAD ÖZGÜR, Berrak . "Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters". Sakarya University Journal of Science 24 / 1 (February 2020): 178-182 . https://doi.org/10.16984/saufenbilder.521545
AMA ÖZGÜR B . Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters. SAUJS. 2020; 24(1): 178-182.
Vancouver ÖZGÜR B . Stability Switches of A Neural Field Model: An Algebraic Study On The Parameters. Sakarya University Journal of Science. 2020; 24(1): 182-178.