Title: Coefficient Inequalities For Janowski Type Close-To-Convex Functions Associated With Ruscheweyh Derivative Operator

Authors: Öznur Özkan Kılıç
Received: 2019-01-10 00:00:00
Accepted: 2019-01-28 00:00:00

Article Type: Research Article
Volume: 23
Issue: 5
Month: October
Year: 2019
Pages: 714-717

How to cite
Öznur Özkan Kılıç; (2019), Coefficient Inequalities For Janowski Type Close-To-Convex Functions Associated With Ruscheweyh Derivative Operator. Sakarya University Journal of Science, 23(5), 714-717, DOI: 10.16984/saufenbilder.511321
Access link
http://www.saujs.sakarya.edu.tr/issue/44066/511321

New submission to SAUJS
http://dergipark.gov.tr/journal/1115/submission/start
Coefficient Inequalities for Janowski Type Close-to-Convex Functions Associated with Ruscheweyh Derivative Operator

Öznur Özkan Kılıç

ABSTRACT

The aim of this paper is to introduce a new subclasses of the Janowski type close-to-convex functions defined by Ruscheweyh derivative operator and obtain coefficient bounds belonging to this class.

Keywords: Univalent Function, Subordination, Close-to-Convex Function, Ruscheweyh Derivative Operator

1. INTRODUCTION

Let \(\mathcal{A} \) denote the class of functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disk

\[\Delta = \{ z \in \mathbb{C} : |z| < 1 \}.\]

Let \(\mathcal{S} \) denote the subclasses of \(\mathcal{A} \) which are univalent in \(\Delta \).

An analytic function \(f \) is subordinate to an analytic function \(F \), written as \(f \prec F \) or \(f(z) \prec F(z) \), if there exists a Schwarz function \(\omega : \Delta \to \Delta \) with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) satisfying \(f(z) = F(\omega(z)) \). In particular, if \(F \) is univalent in \(\Delta \), we have the following equivalence:

\(f(z) \prec F(z) \iff [f(0) = F(0) \land f(\Delta) = F(\Delta)]. \)

The Hadamard product or convolution of two functions \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{A} \) and

\(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{A} \), denoted by \(f \ast g \), is defined by

\[
(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n
\]

for \(z \in \Delta \).

In 1975, Ruscheweyh [5] introduced a linear operator \(\mathcal{D}^\delta : \mathcal{A} \to \mathcal{A} \) defined by

\[
\mathcal{D}^\delta f(z) = \frac{z}{(1-z)^{\delta+1}} \ast f(z)
\]

\[
= z + \sum_{n=2}^{\infty} \varphi_n(\delta) a_n z^n
\]

with

\[
\varphi_n(\delta) = \frac{(\delta + 1)_{n-1}}{(n-1)!}
\]

* Corresponding Author

1 Baskent University, Statistics and Computer Science Program, Ankara, Turkey ORCID: 0000-0003-4209-9320
for \(\delta > -1 \) and \((a)_n \) is Pochhammer symbol defined by

\[
(a)_n = \frac{\Gamma(a + n)}{\Gamma(a)} \quad \text{if } n = 0
\]

\[
= \begin{cases}
1 & \text{if } n = 0 \\
(a(a + 1) \cdots (a + n - 1) & \text{if } n \in \mathbb{N}
\end{cases}
\]

for \(a \in \mathbb{C} \) and \(\mathbb{N} = \{1,2,3,\ldots\} \).

Notice that

\[
D^0 f(z) = f(z),
\]

\[
D^1 f(z) = z f'(z)
\]

and

\[
D^n f(z) = \frac{z(z^{m-1} f(z))^m}{m!}
\]

\[
= z + \sum_{n=2}^{\infty} \frac{\Gamma(n + m)}{\Gamma(m + 1)(n-1)!} a_n z^n
\]

for all \(\delta = m \in \mathbb{N}_0 = \{0,1,2,\ldots\} \).

In geometric function theory, various subclasses defined by Ruscheweyh derivative operator were studied.

Let \(\mathcal{S}^* \) and \(\mathcal{C} \) be the usual subclasses of functions which members are univalent, starlike and convex in \(\Delta \), respectively. We also denote \(\mathcal{S}^*(\alpha) \) and \(\mathcal{C}(\alpha) \) the class of starlike functions of order \(\alpha \) and the class of convex functions of order \(\alpha \), for \(0 \leq \alpha < 1 \), respectively. Note that \(\mathcal{S}^* = \mathcal{S}^*(0) \) and \(\mathcal{C} = \mathcal{C}(0) \).

In 1973, Janowski [2] introduced the classes by \(\mathcal{S}^*(A,B) \) and \(\mathcal{C}(A,B) \)

\[
\mathcal{S}^*(A,B) = \left\{ f \in \mathcal{A} : \frac{zf''(z)}{f'(z)} < \frac{1 + Az}{1 + Bz}, g \in \mathcal{S}^* \right\}
\]

and

\[
\mathcal{C}(A,B) = \left\{ f \in \mathcal{A} : 1 + \frac{zf'''(z)}{f''(z)} < \frac{1 + Az}{1 + Bz} \right\}
\]

for \(-1 \leq B < A \leq 1\), \(z \in \Delta \). Note that \(\mathcal{S}^*(\alpha) = \mathcal{S}^*(1 - 2\alpha, -1) \), \(\mathcal{S}^* = \mathcal{S}^*(1, -1) \) and \(\mathcal{C}(\alpha) = \mathcal{C}(1 - 2\alpha, -1) \), \(\mathcal{C} = \mathcal{C}(1, -1) \).

A function \(f \in \mathcal{A} \) is said to be close-to-star if and only if there exists \(g \in \mathcal{S}^* \) such that \(\Re\{f(z)/g(z)\} > 0 \) for all \(z \in \Delta \). Also, a function \(f \in \mathcal{A} \) is said to be close-to-convex if and only if there exists \(g \in \mathcal{C} \) such that \(\Re\{f'(z)/g'(z)\} > 0 \) for all \(z \in \Delta \). The classes of close-to-star and close-to-convex functions denote by \(\mathcal{CS}^*(\gamma) \) and \(\mathcal{CC}(\gamma) \), respectively. The class of close-to-star functions was introduced by Reade in [4] and the class of close-to-convex functions was introduced by Kaplan in [3]. Similarly, we denote by \(\mathcal{CS}^*(\gamma) \) and \(\mathcal{CC}(\gamma) \) the classes of close-to-star functions of order \(\gamma \) and close-to-convex functions of order \(\gamma \), for \(0 \leq \gamma < 1 \), respectively. Note that \(\mathcal{CS}^* = \mathcal{CS}^*(0) \) and \(\mathcal{CC} = \mathcal{CC}(0) \).

The class of Janowski type close-to-starlike functions in \(\Delta \), denoted by \(\mathcal{CS}^*(A,B) \), is defined by

\[
\mathcal{CS}^*(A,B) = \left\{ f \in \mathcal{A} : \frac{f(z)}{g(z)} < \frac{1 + Az}{1 + Bz}, g \in \mathcal{S}^* \right\}
\]

for \(-1 \leq B < A \leq 1\), \(z \in \Delta \). Similarly, the class of Janowski type close-to-convex functions in \(\Delta \), denoted by \(\mathcal{CC}(A,B) \), is defined by

\[
\mathcal{CC}(A,B) = \left\{ f \in \mathcal{A} : \frac{f'(z)}{g'(z)} < \frac{1 + Az}{1 + Bz}, g \in \mathcal{C} \right\}
\]

for \(-1 \leq B < A \leq 1\), \(z \in \Delta \). The classes are introduced by Reade [4] in 1955.

Definition 1.1. The class of Janowski type functions defined by Ruscheweyh derivative operator in \(\Delta \), denoted by \(\mathcal{J}_\delta(\delta,\beta,A,B) \), is defined by

\[
\mathcal{J}_\delta(\delta,\beta,A,B) = \left\{ f \in \mathcal{A} : \frac{D^\delta f(z)}{D^\beta g(z)} < \frac{1 + Az}{1 + Bz} \right\}
\]

for \(\delta,\beta > -1, -1 \leq B < A \leq 1, z \in \Delta \).

We need the following lemma to obtain our results.

Lemma 1.2. [1] If the function \(p(z) \) of the form
\[p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \]
is analytic in \(\Delta \) and
\[p(z) < \frac{1 + Az}{1 + Bz} \]
then \(|p_n| \leq A - B \) for \(n \in \mathbb{N}, -1 \leq B < A \leq 1 \).

2. MAIN RESULTS AND THEIR CONSEQUENCES

We begin by finding the estimates on the coefficient \(|a_n| \) for functions in the class \(J_R(\delta, \beta, A, B) \).

Theorem 2.1. If the function \(f(z) \in \mathcal{A} \) be in the class \(J_R(\delta, \beta, A, B) \), then

\[|a_n| \leq \frac{n \varphi_n(\beta) + (A - B) \sum_{m=1}^{n-1} m \varphi_m(\beta)}{\varphi_n(\delta)}. \quad (2.1) \]

Proof. Let \(f(z) \in J_R(\delta, \beta, A, B) \). Then, there are analytic functions \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{S}^* \), \(\omega \) is a Schwarz function and

\[p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \] \as in Lemma 1.2 such that

\[\frac{D^\delta f(z)}{D^\beta g(z)} = \frac{1 + A\omega(z)}{1 + B\omega(z)} = p(z) \quad (2.2) \]

for \(z \in \Delta \). Then (2.2) can be written as

\[D^\delta f(z) = p(z).D^\beta g(z) \]
or

\[z + \sum_{n=2}^{\infty} \varphi_n(\delta) a_n z^n \]

\[= z + \sum_{n=2}^{\infty} \sum_{m=1}^{n} \varphi_{n-m+1}(\beta) b_{n-m+1} p_{m-1} \]

Equating the coefficients of like powers of \(z \), we obtain

\[\varphi_2(\delta) a_2 = \varphi_2(\beta) b_2 + p_1, \]
\[\varphi_3(\delta) a_3 = \varphi_2(\beta) b_2 p_1 + \varphi_3(\beta) b_3 + p_2, \]
and

\[\varphi_n(\delta) a_n = \varphi_n(\beta) b_n + \varphi_{n-1}(\beta) b_{n-1} p_1 + \varphi_{n-2}(\beta) b_{n-2} p_{2+\cdots+p_{n-1}}. \]

By using Lemma 1.2 and \(g \in \mathcal{S}^* \), we get

\[\varphi_n(\delta)|a_n| \leq n \varphi_n(\beta) + (A - B) \sum_{m=1}^{n-1} m \varphi_m(\beta) \]
and this inequality is equivalent to (2.1).

Corollary 2.2. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CS}^*(A, B) \), then

\[|a_n| \leq n + \frac{(A - B)(n - 1)n}{2}. \]

Proof. In Theorem 2.1, we take \(\delta = 0, \beta = 0 \).

Corollary 2.3. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CS}^*(\gamma) \), then

\[|a_n| \leq n + (1 - \gamma)(n - 1)n. \]

Proof. In Theorem 2.1, we take \(\delta = 0, \beta = 0, A = 1 - 2\gamma, B = -1 \).

Corollary 2.4. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CS}^* \), then

\[|a_n| \leq n^2. \]

Proof. In Theorem 2.1, we take \(\delta = 0, \beta = 0, A = 1, B = -1 \).

Corollary 2.5. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CC}(A, B) \), then

\[|a_n| \leq 1 + \frac{(A - B)(n - 1)}{2}. \]

Proof. In Theorem 2.1, we take \(\delta = 1, \beta = 0 \).

Corollary 2.6. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CC}(\gamma) \), then

\[|a_n| \leq 1 + (1 - \gamma)(n - 1). \]

Proof. In Theorem 2.1, we take \(\delta = 1, \beta = 0, A = 1 - 2\gamma, B = -1 \).

Corollary 2.7. If the function \(f(z) \in \mathcal{A} \) be in the class \(\mathcal{CC} \), then

\[|a_n| \leq n. \]
Proof. In Theorem 2.1, we take \(\delta = 1, \ \beta = 0, \)
\(A = 1, B = -1. \)

We note that Results in Corollary 2.4 and Corollary 2.7 were proved by Reade in 1955.

(See [4])

REFERENCES

