Title: Synthesis of Certain New Morpholine Derivatives Bearing a Thiazole Moiety

Authors: Nurcan Berber
Received: 2018-04-10 00:00:00
Accepted: 2019-01-17 00:00:00

Article Type: Research Article
Volume: 23
Issue: 4
Month: August
Year: 2019
Pages: 554-558

How to cite
Access link
http://www.saujs.sakarya.edu.tr/issue/43328/414310
Synthesis of Certain New Morpholine Derivatives Bearing a Thiazole Moiety

Nurcan Berber *1

Abstract

Morpholine is a synthetic simple heterocyclic organic compound having characteristic functional groups of amine and ether. Feasible physicochemical properties (polarity and solubility), low cost and wide availability make it a suitable candidate for the synthesis of many potent drugs. In our work, we synthesized a new series of thiazole substituted morpholine derivatives in two steps. In the first step, thiourea was synthesized in THF at 70-75°C for 24 h and then in the second step the formation of thiazole ring was ensured in EtOH-DMF (5:5 v/v) at 60°C for 24 hours.

Keywords: morpholine, thiourea, thiazole

INTRODUCTION

Morpholine is a synthetic simple heterocyclic organic compound having characteristic functional groups of amine and ether [1-3]. Feasible physicochemical properties (polarity and solubility), low cost and wide availability make it a suitable candidate for the synthesis of many potent drugs [4]. Some morpholine derivatives have been reported as anticancer, antifungal, antibacterial and antihypertensive agents. In addition, if the nucleus is linked to a lipophilic skeleton, it improves the bioavailability of bioactive compound in oral administration by enhancing its solubility in water [5-10]. Furthermore, thiazole-containing compounds possess significant interest coming from therapeutic point of view because of their utility as antibacterial and antifungal [11, 12], anti-inflammatory [13], antitubercular [14], central nervous system stimulate [15], anti-HIV [16] and antimalarial [17]. In this study, we report the synthesis of new thiazole substituted morpholine derivatives (5a-g).

MATERIALS AND METHODS

Chemistry

All starting materials and reagents were purchased from commercial suppliers. Reactions were monitored by TLC and TLC plates visualized with short wave UV fluorescence (k = 254 nm). Melting points were taken on a Yanagimoto micro-melting point apparatus and were corrected. IR spectra were measured on a SHIMADZU Prestige-21 (200 VCE)

* Corresponding Author: nberber@comu.edu.tr
1 Çanakkale Onsekiz Mart University, Ezine Vocational High School, Food Prosessing Department, Çanakkale, Turkey. ORCID: https://orcid.org/0000-0002-1595-585X
spectrometer. 1H and 13C NMR spectra were measured on spectrometer at VARIAN Infinity Plus 300 and at 75 MHz, respectively. 1H and 13C chemical shifts are referenced to the internal deuterated solvent. The elemental analysis was carried out with a Leco CHNS-932 (St. Joseph, Michigan) instrument. All chemicals were purchased from Merck (Darmstadt, Germany), Alfa Aesar (Ward Hill, MA) and Sigma-Aldrich (Taufkirchen, Germany).

Synthesis of morpholine derivatives (5a-g)

Thiourea derivatives (3) (1 mmol) and acetophenone derivatives (4) (1 mmol) in EtOH-DMF (5:5 v/v) were stirred and refluxed at 60°C for 24 h. After completion of the reaction, the mixture was allowed cooling to room temperature and poured into cold water (50 ml). The product (5a-g) was filtered, washed with water, and dried [19].

Z(-4-(2-(morpholinoimino)-3-phenyl-2,3-dihydrothiazol-4-yl)benzonitrile (5a):

Yield 70%, m.p.; 191-193 ˚C. 1H NMR (CDCl$_3$, 300 MHz, δ, ppm): 7.50-6.60 (m, 9H, H-Ar); 6.20 (s, 1H, S-CH=C); 3.60 (m,4H, morpholine); 3.28 (m,4H, morpholine). 13C NMR (DMSO, 75 MHz, δ, ppm): 154.5; 147.5; 147.3; 141.3; 138.6; 132.1 (2C); 129.6 (2C); 129.2; 118.8; 116.3; 115.8; 112.6; 111.8; 106.6; 64.4 (2C, morpholine); 54.8 (2C, morpholine). IR (KBr, ν, cm$^{-1}$): 3061 (CH arom.); 1658(C=C); 1614(C=N); Anal. Calcd. For: C$_{20}$H$_{18}$N$_4$O$_4$S: C, 66.28; H, 5.01; N, 15.46; O, 4.41; S, 9.96. Found: C, 66.38; H, 4.99; N, 16.49; O, 4.93; S, 9.96.

Z(-N-(4-(4-fluorophenyl)-3-phenylthiazol-2(3H)-ylidene)morpholin-4-amine (5b):

Yield 73%, m.p. 203-205 ˚C. 1H NMR (CDCl$_3$, 300 MHz, δ, ppm): 7.50-7.00 (m, 9H, H-Ar); 6.40 (s, 1H, S-CH=C); 3.60 (m,4H, morpholine); 3.28 (m,4H, morpholine). 13C NMR (DMSO, 75 MHz, δ, ppm): 154.5; 147.5; 147.4; 141.3; 138.6; 132.1 (2C); 129.6 (2C); 129.2; 118.8; 116.3; 115.8; 112.6; 111.8; 106.6; 64.4 (2C, morpholine); 54.8 (2C, morpholine). IR (KBr, ν, cm$^{-1}$): 3061 (CH arom.); 1658(C=C); 1614(C=N); Anal. Calcd. For: C$_{19}$H$_{18}$FN$_3$O$_3$: C, 66.21; H, 5.10; F, 5.35; N, 11.82; O, 4.50; S, 9.02 Found: C, 66.18; H, 4.90; N, 13.01; O, 4.98; S, 9.96.

Z(-N-(4-(2,4-dichlorophenyl)-3-phenylthiazol-2(3H)-ylidene)morpholin-4-amine (5c):

Yield 76%, m.p. 200-202°C. 1H NMR (CDCl$_3$, 300 MHz, δ, ppm): 7.50-6.90 (m, 8H, H-Ar); 6.40 (s, 1H, S-CH=C); 3.60 (m,4H, morpholine); 3.28 (m,4H, morpholine). 13C NMR (DMSO, 75 MHz,
RESULTS AND DISCUSSION

Thiourea derivatives were carried out by conventional synthesis, involves reaction of morpholine, with phenyl thioisocyanate in THF at 60°C for 24 h [18]. After thiourea synthesis, new thiazole substituted morpholine derivatives (5a-g) was synthesized using acetophenone derivatives in EtOH-DMF (Scheme 1) [19].

(Z)-N-(3-phenyl-4-p-tolylthiazol-2(3H)-ylidene)morpholin-4-amine (5g): Yield 85%, m.p. 175--177°C. \(^1\)H NMR (CDCl\(_3\), 300 MHz, \(\delta\), ppm): 7.50-6.68 (m, 9H, H-Ar); 6.45 (s, 1H, S-CH=C); 3.60 (m,4H, morpholine); 3.28 (m,4H, morpholine). \(^13\)C NMR (DMSO, 75 MHz, \(\delta\), ppm): 147.5; 147.3; 141.3; 138.3; 129.6 (2C); 118.8; 116.8; 115.8; 112.6; 106.6; 64.4 (2C, morpholine); 55.9; 54.8 (2C, morpholine). IR (KBr, \(\nu\), cm\(^{-1}\)): 3378 (OH); 3061 (CH arom.); 1658(C=C); 1614(C=N); Anal. Calcd. For: C\(_{20}\)H\(_{21}\)N\(_3\)O\(_3\)S: C, 61.77; H, 5.18; N, 11.37; O, 12.99; S, 9.68. Found: C, 62.38; H, 6.15; N, 13.49; O, 13.90; S, 9.96.

In the first experiments, the reaction was only carried out in ethanol and the yield was observed.
to be rather low. In later experiments, the reaction was carried out in a mixture of EtOH-DMF (5: 5 v / v) to give product synthesis in yields ranging from 68% to 85%. Further, the compounds formed at the end of the reaction were poured into iced water, it was observed that hydroxyl group-containing compound (5e) was retained in water and obtained with lower yield.

Also, the structures of the compounds were deduced from their IR, 1HNMR, 13CNRMR spectra. In the infrared spectra of compounds (5a-g) around 3061(CH arom.); 1658(C=C); 1614(C=N) cm$^{-1}$ region. 5a and 5e characteristic absorption bands displayed 2257(C≡N) and 3378 (OH-) cm$^{-1}$ region. From the 1HNMR spectra of all the compounds showed (-S-CH=C) protons signal around 6.50 ppm; the (= CH proton) peaks on aromatic ring come between 6.68 and 8.00 ppm; and than the eight protons signal of morpholine also showed around 3.60-3.28 ppm. And also characteristic protons signals of 5e, 5f and 5g (-OH, -OMe and –CH$_3$) showed respectively around 6.20, 3.68 and 2.58 ppm. From the 13C NMR spectra, a sign can be seen about 160.0 ppm for thiazole ring (-N=C-S-).

In conclusion, we have reported the synthesis and characterization of new thiazole substituted morpholine derivatives (5a-g). All spectra and elemental analyses support the structure of the synthesized compounds.

ACKNOWLEDGMENTS

The author is thankful to Sakarya University and Prof. Dr. Mustafa Arslan for all kind support.

REFERENCES

[10] N.C. Desai, K.M. Rajpara, V.V. Joshi, "Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial..."

[19] Ö. Güleç, M. Arslan, N. Gencer, et. al., "Synthesis and carbonic anhydrase inhibitory properties of new spiroindoline-