Title: Compact Operators on the Sets of Fractional Difference Sequences

Authors: Faruk Özger
Recieved: 2018-09-24 00:00:00
Accepted: 2019-01-02 00:00:00

Article Type: Research Article
Volume: 23
Issue: 3
Month: June
Year: 2019
Pages: 425-434

How to cite
Access link
http://www.saujs.sakarya.edu.tr/issue/41686/463368
Compact operators on the sets of fractional difference sequences

Faruk Özger*

Abstract

The sets of fractional difference sequences have been studied in the literature recently. In this work, some identities or estimates for the operator norms and the measure of noncompactness of certain operators on difference sets of sequences of fractional orders are established. Some classes of compact operators on those spaces are characterized.

Keywords: fractional operators, measure of noncompactness, compact operators

1. INTRODUCTION

The sets of difference sequences are probably the most common type of sets among the sets of sequences studied. The sets of difference sequences were first introduced in Kızmaz’s study [21]. Many authors have made efforts to investigate the topological structures of these spaces during the past decade (see [5, 7, 8, 17, 18, 23, 24, 28]). Compact operators on the sets of difference sequences have been characterized in [9, 10, 23]. We refer to [4, 11, 12, 14-18, 27-33] for further studies in theory of FK-spaces and its applications. In order to give full knowledge on the measure of noncompactness in the sequence spaces and the sets of fractional difference sequence spaces we refer to [34-50].

More recently, certain difference sequence spaces of fractional orders have been introduced by Baliarsingh [30]. Certain Euler difference sequence spaces of fractional order and related dual properties have been studied by Kadak and Baliarsingh [32]. Topological properties of certain sequence spaces that are combined by the mean operator and the fractional difference operator are investigated by Furkan [19]. Geometric characterizations of a fractional Banach set is given by Özger [16].

The rest of the paper is organized as follows: In the rest of this section, we consider fractional operators, their properties and the sets $c_0(\Delta^{(\alpha)})$, $c(\Delta^{(\alpha)})$ and $\ell_\infty(\Delta^{(\alpha)})$ of fractional difference sequences. In section 2, we will focus on some preliminary results, such as the determination of β duals of the sets of fractional difference sequences. In section 3, we will characterize the corresponding matrix transformations and find their operator norms. In section 4, we will establish some identities or estimates for the Hausdorff measure of noncompactness (HMN) of certain operators on fractional difference sequence spaces. Finally in section 5, we will conclude the paper with some notes and also with a table that includes main results about the compact operators on fractional Banach sets.

The gamma function of a real number x (except zero and the negative integers) is defined by an improper integral:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$
It is known that for any natural number \(n \), \(\Gamma(n+1) = n! \) and \(\Gamma(n+1) = n\Gamma(n) \) holds for any real number \(n \in \{0,-1,-2,\ldots\} \). The fractional difference operator for a positive fraction \(\alpha \) have been defined in [30] as

\[
\Delta^{(\alpha)}(\rho_k) = \sum_{i=0}^{\infty} (-1)^i \frac{\Gamma(\alpha+1)}{i! \Gamma(\alpha+i)} \rho_{k-i}, \tag{1.1}
\]

It is assumed that the series defined in (1.1) is convergent for \(\rho \in \omega \). The infinite sum defined in (1.1) becomes a finite sum if \(\alpha \) is a nonnegative integer. We use the usual convention that any term with a negative subscript is equal to naught, throughout the paper.

The inverse of fractional difference matrix

\[
\Delta^{-\alpha}_{nk} = \begin{cases}
(-1)^{n-k} \frac{\Gamma(-\alpha+1)}{(n-k)! \Gamma(-\alpha-n+k+1)}, & 0 \leq k \leq n, \\
0, & k > n.
\end{cases}
\]

is given in [30] as

\[
\Delta_{nk}^{-\alpha} = \begin{cases}
(-1)^{-\alpha}_{nk} \frac{\Gamma(\alpha+1)}{(n-k)! \Gamma(\alpha-n+k+1)}, & 0 \leq k \leq n, \\
0, & k > n.
\end{cases}
\]

For some values of \(\alpha \), we have

\[
\Delta^{1/2} \rho_k = \rho_k - \frac{1}{2} \rho_{k-1} - \frac{1}{8} \rho_{k-2} - \frac{1}{16} \rho_{k-3} - \frac{5}{128} \rho_{k-4} - \cdots,
\]

\[
\Delta^{-1/2} \rho_k = \rho_k + \frac{1}{2} \rho_{k-1} + \frac{3}{8} \rho_{k-2} + \frac{5}{16} \rho_{k-3} + \frac{35}{128} \rho_{k-4} + \cdots
\]

\[
\Delta^{2/3} \rho_k = \rho_k - \frac{2}{3} \rho_{k-1} - \frac{1}{9} \rho_{k-2} - \frac{4}{27} \rho_{k-3} - \frac{7}{243} \rho_{k-4} - \cdots
\]

Remark 1.1 [30, Theorem 2] The following results hold:

- \(\Delta^{(\alpha)} \circ \Delta^{-\alpha} = I \), where I is identity on \(\rho \in \omega \).
- \(\Delta^{(\alpha)} \Delta^{(\beta)} = \Delta^{(\alpha+\beta)} \).

Note that the studied fractional difference operator includes some special cases. We refer to [30,32] for further results about these operators.

2. PRELIMINARY RESULTS

We state the known results that are used here and in the sequel for the reader’s convenience.

Let \(\omega \) denote the set of all complex sequences \(\rho = (\rho_k)_{k=0}^{\infty} \). We write \(\ell_\infty, c_0 \) and \(\Phi \) for the bounded, convergent, null and finite sequence spaces, respectively; also \(cs \) and \(\ell_1 \) denote convergent and absolutely convergent series spaces.

A subspace \(\lambda \) of \(\omega \) is said to be a BK space if it is a Banach space with continuous coordinates \(P_k: \lambda \to \mathbb{C} \) \((n = 0,1,\ldots)\), where \(P_n(\rho) = \rho_n \) for all \(\rho \in \lambda \). A BK space \(\lambda \supset \Phi \) is said to have AK if every sequence \(\rho = (\rho_k)_{k=0}^{\infty} \in \lambda \) has a unique representation \(\rho = \lim_{m=\infty} \rho^{[m]} \), where \(\rho^{[m]} = \sum_{n=0}^{m} \rho_n e^{(n)} \) is the m section of the sequence \(\rho \). Let \(\lambda \) be a normed space. By \(N_\lambda \) we denote any subset of \(\mathbb{N}_0 \) with elements greater or equal to \(r \).

Let \(\rho \) and \(\sigma \) be sequences and \(\lambda \) and \(\mu \) be subsets of \(\omega \), then we write \(\rho \cdot \sigma = (\rho_k \sigma_k)_{k=0}^{\infty} \). \(\rho^{[-1]} \ast \mu = \{ \alpha \in \omega: \alpha \cdot \rho \in \mu \} \) and \(M(\lambda,\mu) = \{ \rho \in \lambda: \rho^{[-1]} \ast \mu \} \). Let \(A \in \mathbb{K} \) be a Banach space with continuous coordinates \(P_k: \mathbb{K} \to \mathbb{C} \) \((n = 0,1,\ldots)\), and \(A \rho = (A \rho)_{n=0}^{\infty} \), provided \(A \rho \) is an \(\ell_1 \) for all \(\rho \). If \(\lambda \) and \(\mu \) are subsets of \(\omega \), then \(\lambda \mu = \{ \rho \in \omega: A \rho \in \lambda \} \) is called matrix domain of \(\lambda \) in \(\mu \). Class of all infinite matrices that map \(\lambda \) into \(\mu \) is denoted by \((\lambda,\mu) \) and \(A \in (\lambda,\mu) \) if and only if \(\lambda \subset \mu_A \). An infinite matrix \(T = (t_{nk})_{n,k=0}^{\infty} \) is said to be a triangle if \(t_{nk} = 0 \) \((k > n)\) and \(t_{nn} \neq 0 \) for all \(n \). We denote its inverse by \(S \). We have \(\|a\|_{\lambda} = \sup_{\rho \in \lambda} |a_k\rho_k| \) for \(a \in \omega \), provided the expression on the right hand side is defined and finite which is the case whenever \(\lambda \) is a BK space and \(a \in \ell_1 \) ([4], Theorem 7.2.9, p. 107).

Consider now the fractional difference sequence spaces

\[
c_0(\Delta^{(\alpha)}) = \{ \rho \in \omega: \lim_{k} \Delta^{(\alpha)}(\rho_k) = 0 \}, \quad c(\Delta^{(\alpha)}) = \{ \rho \in \omega: \lim_{k} \Delta^{(\alpha)}(\rho_k) \text{ exists} \} \text{ and } \ell_\infty(\Delta^{(\alpha)}) = \{ \rho \in \omega: \sup_k |\Delta^{(\alpha)}(\rho_k)| < \infty \}.
\]

Note that the sequence \(\sigma = (\sigma_k) \) can be considered as the \(\Delta^{(\alpha)} \)-transform of a sequence \(\rho = (\rho_k) \), that is,
\[\sigma_k = \rho_k - a \rho_{k-1} + \frac{\alpha(a-1)}{2!} \rho_{k-2} - \frac{\alpha(a-1)(a-2)}{3!} \rho_{k-3} + \ldots \]

\[= \sum_{i=0}^{\infty} (-1)^i \frac{\Gamma(a+1)}{i! \Gamma(a-i+1)} \rho_{k-i}. \]

The defined spaces can be considered as the matrix domains of the triangle \(\Delta(\alpha)\) in the classical sequence spaces \(c_0, c, \ell_\infty\).

The set \(\lambda_T\) is a BK space with \(\|\cdot\|_T = \|T(\cdot)\|\) whenever \((\ell, \|\|)\) is a BK space. By this fact, defined fractional difference sequence spaces are complete, linear BK–spaces with the norm \(\|\rho\| = \sup_k |\Delta(\alpha)(\rho_k)|\).

A sequence \((b_n)_{n=0}^{\infty}\) in a linear metric space \(\lambda\) is called a Schauder basis if for each \(\rho \in \lambda\) there exists a unique sequence \((\lambda_n)_{n=0}^{\infty}\) of scalars such that \(\rho = \sum_{n=0}^{\infty} \lambda_n b_n\).

Also \(\lambda_T\) has a basis if and only if \(\lambda\) has a basis.

Theorem 2.1 If we write \(\eta^{(m)}\) and \(\eta^{(-1)}\) as

\[\eta^{(m)}_k = \begin{cases} 0, & 0 \leq k \leq m \\ (-1)^{k-m} \frac{\Gamma(-\alpha + 1)}{(k-m)! \Gamma(-\alpha + m - k + 1)}, & k \geq m \end{cases} \]

for \(n = 0, 1, \ldots\) and for \(k=1,2,\ldots\)

\[\eta^{(-1)}_k = \sum_{n=0}^{\infty} (-1)^{n-k} \frac{\Gamma(-\alpha + 1)}{(k-n)! \Gamma(-\alpha + n - k + 1)}. \]

• Then \(\eta^{(m)}_{m=0}^{\infty}\) is a Schauder basis for \(c_0(\Delta(\alpha))\) and every sequence \(\rho = (\rho_m)_{m=0}^{\infty} \in c_0(\Delta(\alpha))\) has a unique representation \(\rho = \sum_m (\Delta(\alpha)^{m}) \eta^{(m)}\) for all \(m\).

• Then \(\eta^{(-1)}_{m=0}^{\infty}\) is a Schauder basis for \(c(\Delta(\alpha))\), and every sequence \(\rho = (\rho_m)_{m=0}^{\infty} \in c(\Delta(\alpha))\) has a unique representation \(\rho = \xi \eta^{(-1)} + \sum_m (\sigma_m - \xi) \eta^{(m)}\), where \(\xi = \lim_{m \to \infty} \sigma_m\).

• The set \(\ell_\infty(\Delta(\alpha))\) has no Schauder basis.

Proof. The proof is an immediate consequence of [1, Lemma 2.3 and Corollary 2.5].

We now focus on the \(\beta\) duals and operator norms of fractional sets of sequences.

Lemma 2.2 [10, Lemma 3.4] Let \(T\) be a triangle, \(S = T^{-1}\) and \(R = S^t\).

• If \(\lambda\) is a BK set with AK property or \(\lambda = \ell_\infty\), we have \(c \in (\lambda_T)^\beta\) if and only if \(a \in (\lambda_T)^R\) and \(W \in (\lambda, c_0)\) where the triangle \(W\) is defined for \(n = 0, 1, 2, \ldots\) by \(w_{nk} = \sum_{j=0}^{n} a_j s_{jk} \) (\(0 \leq k \leq n\)) and \(w_{nk} = 0 \) \((k > n)\). Furthermore, if \(a \in (\lambda_T)^\beta\) then

\[\sum_k a_k z_k = \sum_k (R_k a(T_k z)) \forall z \in \lambda_T. \]

• We have \(a \in (c_T)^\beta\) if and only if \(a \in (c_T)_R\) and \(W \in (c, c)\). Furthermore, if \(a \in (c_T)^\beta\) then we have

\[\sum_k a_k z_k = \sum_k (R_k a(T_k z)) - \lim_k T_k \lim_n \sum_{k=0}^{n} w_{nk} \forall z \in c_T. \]

Remark 2.3 [10, Remark 3.5] We have the following results:

• The condition \(W \in (\lambda, c_0)\) in Lemma 2.2(i) can be changed by \(W \in (\lambda, \ell_\infty)\) if \(\lambda\) is a BK set with AK property.

• The condition \(W \in (c, c)\) in Lemma 2.2(ii) can be changed by the conditions \(W \in (c_0, \ell_\infty)\) and \(\lim_n W_n e = y\) exists.

Theorem 2.4 We have

\[a \in (c_0(\Delta(\alpha))^\beta\] if and only if

\[\sum_k \left| \sum_{j=k}^{\infty} (-1)^{j-k} \frac{\Gamma(-\alpha + 1)}{(j-k)! \Gamma(-\alpha + j + k + 1)} a_j \right| < \infty \]

and

\[\sup_k \left(\sum_{k=0}^{n} \sum_{j=1}^{\infty} (-1)^{j-k} \frac{\Gamma(-\alpha + 1)}{(j-k)! \Gamma(-\alpha + j + k + 1)} a_j \right) \]

\[< \infty; \]

furthermore, if \(a \in (c_0(\Delta(\alpha))^\beta\) then \(\forall \rho \in c_0(\Delta(\alpha))\) we have

\[\sum_k a_k \rho_k = \sum_k \left(\sum_{j=k}^{\infty} (-1)^{j-k} \frac{\Gamma(-\alpha + 1)}{(j-k)! \Gamma(-\alpha + j + k + 1)} a_j \right) \sigma_k. \]

\[a \in (c(\Delta(\alpha))^\beta\] if and only if (2.3), (2.4) and
Compact Operators on the Sets of Fractional Difference Sequences

Let us now establish identities and inequalities of operator norms for fractional sequence spaces. We need following results to characterize some classes of matrix mappings on the sets of fractional sequences and for determination of the operator norms of defined sets.

Lemma 3.1 If λ and μ are BK sets.

- Every matrix $A \in (\lambda, \mu)$ defines an operator $L_A \in \mathcal{B}(\lambda, \mu)$, where $L_A(\rho) = A\rho$ for all $\rho \in \lambda$ [6, Theorem 1.23].

- Every operator $L \in \mathcal{B}(\lambda, \mu)$ is given by a matrix $A \in (\lambda, \mu)$ such that $L(\rho) = A\rho$ for all $\rho \in \lambda$ if the set λ has AK property [1, Theorem 1.9].

Lemma 3.2 [13, Theorem 3.4, Remark 3.5] Let μ be any subset of ω.

- If λ is a BK set with AK property or $\lambda = \ell_1$, and $R = S^t$ we have $A \in (\lambda_T, \mu)$ if and only if $\hat{A} \in (\lambda, \mu)$ and $\psi(\lambda_n) \in (\lambda, c_0)$ for all $n = 0, 1, \ldots$. Here \hat{A} is the matrix with rows $\hat{A}_n = Ra_n$ for $n = 0, 1, \ldots$, and the triangles $\psi(A_n)$ $(n = 0, 1, \ldots)$ are defined as 3.2 with a_j changed by a_{nj}. Furthermore, if $A \in (\lambda, \mu)$ then we have $Az = \hat{A}(Tz)$ for all $z \in \lambda_T$.

- We have $A \in (c_T, \mu)$ if and only if $\hat{A} \in (c_0, \mu)$ and $\psi(A_n) \in (c, c)$ for all $n = 0, 1, \ldots$ and $\hat{A}e - (\gamma_n)_{n=0}^{\infty} \in \mu$, where $\gamma_n = \lim_{m} \sum_{k=0}^{m} \psi^{(A_n)}(\alpha_{nk})$ for $n = 0, 1, \ldots$.

Furthermore, if $A \in (c_T, \mu)$ then we have $Az = \hat{A}(Tz) - \eta(\gamma_n)_{n=0}^{\infty}$ for all $z \in c_T$, where $\eta = \lim_{m} T_k z$.

Theorem 3.3 Let $\lambda = c_0(\Delta(\alpha))$ or $\lambda = \ell_\omega(\Delta(\alpha))$.

- Let $\mu = c_0$, ℓ_ω. If $A \in (\lambda_T, \mu)$ then, putting

$$
\|A\|_{(\lambda_T, \mu)} = \sup_{n} \left| \sum_{k=0}^{\infty} \left(-1 \right)^{j-k} \frac{\Gamma(-\alpha+1)}{(j-k)!\Gamma(-\alpha+j+k+1)} a_{jk} \right|
$$

and this is the condition in (2.8). Note that, (2.5) in Parts (i) and (iii) and (2.7) come from (2.1) and (2.2), respectively.

3. OPERATOR NORMS AND MATRIX TRANSFORMATIONS ON FRACTIONAL SEQUENCE SPACES

Let us now establish identities and inequalities of operator norms for fractional sequence spaces. We need following results to characterize some classes of matrix mappings on the sets of fractional sequences and for determination of the operator norms of defined sets.

Lemma 3.1 If λ and μ are BK sets.

1. Every matrix $A \in (\lambda, \mu)$ defines an operator $L_A \in \mathcal{B}(\lambda, \mu)$, where $L_A(\rho) = A\rho$ for all $\rho \in \lambda$ [6, Theorem 1.23].
2. Every operator $L \in \mathcal{B}(\lambda, \mu)$ is given by a matrix $A \in (\lambda, \mu)$ such that $L(\rho) = A\rho$ for all $\rho \in \lambda$ if the set λ has AK property [1, Theorem 1.9].

Lemma 3.2 [13, Theorem 3.4, Remark 3.5] Let μ be any subset of ω.

1. If λ is a BK set with AK property or $\lambda = \ell_1$, and $R = S^t$ we have $A \in (\lambda_T, \mu)$ if and only if $\hat{A} \in (\lambda, \mu)$ and $\psi(\lambda_n) \in (\lambda, c_0)$ for all $n = 0, 1, \ldots$. Here \hat{A} is the matrix with rows $\hat{A}_n = Ra_n$ for $n = 0, 1, \ldots$, and the triangles $\psi(A_n)$ $(n = 0, 1, \ldots)$ are defined as 3.2 with a_j changed by a_{nj}. Furthermore, if $A \in (\lambda, \mu)$ then we have $Az = \hat{A}(Tz)$ for all $z \in \lambda_T$.
2. We have $A \in (c_T, \mu)$ if and only if $\hat{A} \in (c_0, \mu)$ and $\psi(A_n) \in (c, c)$ for all $n = 0, 1, \ldots$ and $\hat{A}e - (\gamma_n)_{n=0}^{\infty} \in \mu$, where $\gamma_n = \lim_{m} \sum_{k=0}^{m} \psi^{(A_n)}(\alpha_{nk})$ for $n = 0, 1, \ldots$.

Furthermore, if $A \in (c_T, \mu)$ then we have $Az = \hat{A}(Tz) - \eta(\gamma_n)_{n=0}^{\infty}$ for all $z \in c_T$, where $\eta = \lim_{m} T_k z$.

Theorem 3.3 Let $\lambda = c_0(\Delta(\alpha))$ or $\lambda = \ell_\omega(\Delta(\alpha))$.

1. Let $\mu = c_0$, ℓ_ω. If $A \in (\lambda_T, \mu)$ then, putting

$$
\|A\|_{(\lambda_T, \mu)} = \sup_{n} \left| \sum_{k=0}^{\infty} \left(-1 \right)^{j-k} \frac{\Gamma(-\alpha+1)}{(j-k)!\Gamma(-\alpha+j+k+1)} a_{jk} \right|
$$

This is the condition in (2.8). Note that, (2.5) in Parts (i) and (iii) and (2.7) come from (2.1) and (2.2), respectively.
we have \(\|L_A\| = \|A\|_{(\lambda, \ell_1)} \).

- If \(A \in (\lambda, \ell_1) \) and \(\Omega_1 = \|A\|_{(\lambda, 1)} \). Then we have \(\Omega_1 \leq \|L_A\| \leq 4\Omega_1 \), where

\[
\Omega_1 = \sup_{N \in \mathbb{N} \text{ finite}} \sum_{n=1}^{\infty} \left(\sum_{j=k}^{\infty} (-1)^{j-k} \frac{\Gamma(-\alpha+1)}{(j-k)! \Gamma(-\alpha-j+k+1)} a_{nj} \right).
\]

Proof: The proof is based on the results in [22, Theorem 2.8].

Theorem 3.4 The operator norm of the set \(c(\Delta^{(3)}) \) is given.

- Let \(A \in (c(\Delta^{(3)}), \mu) \), where \(\mu \) is any of the spaces \(c_0, \) \(c \) or \(\ell_\infty \). Then we have

\[
\|L_A\| = \sup_n \left(\sum_{k=1}^{\infty} \left(\sum_{j=k}^{\infty} \left| \frac{\Gamma(-\alpha+1)}{(j-k)! \Gamma(-\alpha-j+k+1)} a_{nj} \right| \right) + \left| \sum_{n=1}^{\infty} y_n \right| \right).
\]

where \(y_n = \lim_m \sum_{k=1}^{\infty} |\psi_{mk}(A)| \) for \(n = 0, 1, \ldots \)

- Let \(A \in (c(\Delta^{(3)}), \ell_1) \) and \(\Omega_2 = \|A\|_{(c(\Delta^{(3)}), 1)} \). Then we have \(\Omega_2 \leq \|L_A\| \leq 4\Omega_2 \), where

\[
\Omega_2 = \sup_{N \in \mathbb{N} \text{ finite}} \left(\sum_{k=1}^{\infty} \left(\sum_{j=k}^{\infty} \left| \frac{\Gamma(-\alpha+1)}{(j-k)! \Gamma(-\alpha-j+k+1)} a_{nj} \right| \right) + \left| \sum_{n=1}^{\infty} y_n \right| \right).
\]

Proof: The proof is based on the results in [22, Theorem 2.9].

We now give the necessary and sufficient conditions for

\[
A \in (\ell_\infty(\Delta^{(3)}), \mu), \ A \in (c_0(\Delta^{(3)}), \mu) \text{ and } A \in (c(\Delta^{(3)}), \mu), \ \text{where } \mu \in \{\ell_\infty, c_0, c, \ell_1\}.
\]

Theorem 3.5 The necessary and sufficient conditions for \(A \in (\lambda(\Delta^{(3)}), \mu) \), where \(\mu \in \{\ell_\infty, c_0, c, \ell_1\} \) and \(\lambda \in \{\ell_\infty, c_0, c\} \) can be read from the following table:

<table>
<thead>
<tr>
<th>From/To</th>
<th>(\ell_\infty(\Delta^{(3)}))</th>
<th>(c_0(\Delta^{(3)}))</th>
<th>(c(\Delta^{(3)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_\infty)</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(c_0)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(c)</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>(\ell_1)</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

(1) (1A) and (1B) where (1A)- \(\|A\|_{(\ell_\infty(\Delta^{(3)}), \omega)} = \sup_n \sum_{k=0}^{\infty} |\hat{a}_{nk}| < \infty \),

(1B)- \(\|\psi(A_n)\|_{(\ell_\infty, c_0)} = \lim_{m \to \infty} \sum_{k=0}^{m} |\psi_{mk}(A_n)| = 0 \) for all \(n \).

(2) (1A) and (2A) where

(2A)- \(\|\psi(A_n)\|_{(\ell_\infty, \ell_\infty)} = \sup_m \sum_{k=0}^{m} |\psi_{mk}(A_n)| < \infty \) for all \(n \).

(3) (1A), (2A), (3A) and (3B) where

(3A)- \(\lim_{m \to \infty} \sum_{k=0}^{m} |\psi_{mk}(A_n)| = y_n \) exists for each \(n \),

(3B)- \(\sup_n \sum_{k=0}^{\infty} \hat{a}_{nk} - y_n = 0 \).

(4) (1B) and (4A) where

(4A)- \(\lim_{m \to \infty} \sum_{k=0}^{m} |\hat{a}_{nk}| = 0 \).

(5) (1A), (2A) and (5A) where

(5A)- \(\lim_{n \to \infty} \hat{a}_{nk} = 0 \) for each \(k \).

(6) (1A), (2A), (3A), (5A) and (6A) where

(6A)- \(\lim_{n \to \infty} \sum_{k=0}^{\infty} \hat{a}_{nk} - y_n = 0 \).

(7) (1B), (7A), (7B) and (7C) where

(7A)- \(\lim_{n \to \infty} \hat{a}_{nk} = \hat{a}_k \) exists for each \(k \),

(7B)- \(\sum_{k=0}^{\infty} |\hat{a}_{nk}| + \sum_{k=0}^{\infty} |\hat{a}_k| < \infty \) for all \(n \),

(7C)- \(\sum_{n=0}^{\infty} \hat{a}_{nk} - \hat{a}_k = 0 \).

(8) (1A), (2B) and (7A).

(9) (1A), (2B), (3A), (7A) and (9A) where

(9A)- \(\lim_{n \to \infty} \sum_{k=0}^{\infty} \hat{a}_{nk} - y_n = \delta \) exists.
(10A) (1B) and (10A) where
\[\lim_{m \to \infty} \sum_{k=0}^{m} \psi_{mk}^{(A_n)} = \lim_{m \to \infty} \sum_{k=0}^{m} \psi_{mk}^{(A_n)} = \gamma_n\]
satisfies for \(n = 0, 1, \ldots\) and also
\[\left(\hat{A} - \left(\lim_{m \to \infty} \sum_{k=0}^{m} \psi_{mk}^{(A_n)}\right)\right) \in \mu\]
satisfies for \(n = 0, 1, \ldots\). It implies, we must add final two conditions to those for \(A \in (c_0(\Delta^{(a)}), \mu), \) that is, (3A) and (3B) in (3) to those in (2), (3A) and (6A) in (6) to those in (5), (3A) and (9A) in (9) to those in (8) and (3A) and (12A) in (12) to those in (11). It completes the proofs of (3), (6), (9), (12).

4. APPLICATIONS OF MEASURE OF NONCOMPACTNESS ON FRACTIONAL BANACH SETS

We first present some concepts about HMN.

Let \(\lambda\) and \(\mu\) be infinite dimensional Banach spaces then a linear operator \(L: \lambda \to \mu\) is called compact if domain of \(L\) is all of \(\lambda\), and \((L(\rho_n))\) has a convergent subsequence for every bounded sequence \((\rho_n)\) in \(\lambda\). Class of those operators is denoted by \(C(\lambda, \mu)\).

Let \((\lambda, d)\) be a metric space, \(B(x_0, \delta) = \{x \in \lambda: d(x, x_0) < \delta\}\) be an open ball and \(\mathcal{M}_\lambda \in \lambda\) be the collection of bounded sets. HMN of \(Q \in \mathcal{M}_\lambda\) is

\[\chi(Q) = \text{inf}\{\varepsilon > 0: Q \subseteq \bigcup_{k=1}^{n} B(x_k, \delta_k): x_k \in \lambda, \delta_k < \varepsilon, 1 \leq k \leq n, n \in \mathbb{N}\} \]

Let \(\lambda\) and \(\mu\) be Banach spaces and \(\chi_1\) and \(\chi_2\) be measures of noncompactness on \(\lambda\) and \(\mu\). Then the operator \(L: \lambda \to \mu\) is called \((\chi_1, \chi_2)\)–bounded if \(L(Q) \in \mathcal{M}_\mu\) for every \(Q \in \mathcal{M}_\lambda\) and there exists a positive constant \(C\) such that

\[\chi_2(L(Q)) \leq C \chi_1(Q) \quad \text{for every } Q \in \mathcal{M}_\lambda. \quad (4.1)\]

If an operator \(L\) is \((\chi_1, \chi_2)\)–bounded then the number

\[\|L\|_{(\chi_1, \chi_2)} = \text{inf}\{C \geq 0: (4.1) \text{ holds for all } Q \in \mathcal{M}_\lambda\}\]

is called the \((\chi_1, \chi_2)\)–measure of noncompactness of \(L\). In particular, if \(X_1 = X_2 = \chi\), then we write \(\|L\|_{\chi}\) instead of \(\|L\|_{(\chi, \chi)}\).

Let \(\lambda\) and \(\mu\) be Banach sets and \(L \in \mathcal{B}(\lambda, \mu)\). Then
\[\|L\|_X = \chi(L(B_\lambda)) = \chi(L(S_\lambda)), \quad (4.2) \]
\[\|L\|_X = 0 \text{ if and only if } L \in C(\lambda, \mu) \quad (4.3) \]
by [6, Corollary 2.26].

If Q is a bounded subset of the normed space \(\lambda \), where \(\lambda \) is \(\ell_p \) for \(1 \leq p < \infty \) or \(c_0 \) and if \(P_\lambda: \lambda \rightarrow \lambda \) is the operator defined by \(P_\lambda(\rho) = \rho^{|\rho|} \) for \(\rho = (\rho_k)_{k=0}^\infty \in \lambda \), then we have \(\chi(Q) = \lim_n (\sup_{\rho \in Q} |R_\rho(\rho)|) \) [6, Theorem 2.8].

We now establish some identities or estimates for the HNM of certain operators on fractional difference sequence spaces to characterize compact operators in the last section.

Theorem 4.3 The identities or estimates for \(L_A \) when \(A \in (\lambda(\Delta(\alpha)), \mu), \) where \(\mu \in \{\ell_\infty, c_0, c, \ell_1\} \) and \(\lambda \in \{\ell_\infty, c_0, c\} \) can be read from the following table:

| From/To \(| \ell_\infty(\Delta(\alpha)) \) | \(c_0(\Delta(\alpha)) \) | \(c(\Delta(\alpha)) \) |
|---|---|---|
| \(\ell_\infty \) | 1 | 1 | 2 |
| \(\ell_1 \) | 2 | 3 | 4 |
| \(c \) | 5 | 5 | 6 |

Table 2. Identities or estimates for \(L_A \) when \(A \in (\lambda(\Delta(\alpha)), \mu) \).

Here

1. \(0 \leq \|L\|_X \leq \lim_{r \rightarrow \infty} (\sup_{n \in \mathbb{Z}} \sum_{k=0}^\infty |\hat{a}_{nk}|) \);
2. \(0 \leq \|L\|_X \leq \lim_{r \rightarrow \infty} (\sup_{n \in \mathbb{Z}} \sum_{k=0}^\infty |\hat{a}_{nk}| + |\gamma_n|) \);
3. \(\|L\|_X = \lim_{r \rightarrow \infty} \|\hat{A}^p\|_{(\ell_\infty, \ell_\infty)} \);
4. \(\|L\|_X = \lim_{r \rightarrow \infty} (\sup_{n \in \mathbb{Z}} \sum_{k=0}^\infty |\hat{a}_{nk}| + |\gamma_n|) \);
5. \(\frac{1}{2} \lim_{r \rightarrow \infty} \|B^p\|_{(\ell_\infty, \ell_\infty)} \leq \|L\|_X \leq \lim_{r \rightarrow \infty} \|B^p\|_{(\ell_\infty, \ell_\infty)} \);
6. \(\frac{1}{2} \lim_{r \rightarrow \infty} (\sup_{n \in \mathbb{Z}} \sum_{k=0}^\infty |\hat{b}_{nk}| + |\delta_n|) \leq \|L\|_X \leq \lim_{r \rightarrow \infty} (\sup_{n \in \mathbb{Z}} \sum_{k=0}^\infty |\hat{b}_{nk}| + |\delta_n|) \);
7. \(\limsup_{r \rightarrow \infty} \sum_{n \in \mathbb{N}} \hat{a}_{nk}^p \leq \|L\|_X \leq \sum_{n \in \mathbb{N}} \hat{a}_{nk}^p \);
8. \(\limsup_{r \rightarrow \infty} \left(\sum_{n \in \mathbb{N}} \hat{a}_{nk}^p + |\gamma_n| \right) \leq \|L\|_X \leq 4 \limsup_{r \rightarrow \infty} \left(\sum_{n \in \mathbb{N}} \hat{a}_{nk}^p + |\gamma_n| \right) \).

where the notations used in the theorem are defined as follows:

Here, \(A^p \) represents a matrix with rows \(A_{nk}^p = 0 \) for \(0 \leq n \leq p \) and \(A_{nk}^p = A_{nk} \) for \(n \geq p + 1 \) where \(A = (a_{nk})_{n,k=0}^\infty \) is an infinite matrix and \(p \in \mathbb{N}_0 \). Then we write \(\hat{A} \) for the matrix with

\[\hat{a}_{nk} = \sum_{j=k}^\infty (-1)^{j-k} \frac{\Gamma(-\alpha + 1)}{(j-k)! \Gamma(-\alpha - j + k + 1)} a_{nj} \]
for all \(n, k \in \mathbb{N}_0 \); and \(\hat{A} = (\hat{a}_{nk})_{n,k=0}^\infty \) and \(\gamma = (\gamma_n)_{n=0}^\infty \) for the sequences with \(\hat{a}_{nk} = \lim_{n \rightarrow \infty} \hat{a}_{nk} \) for \(k = 0,1, \ldots \) and \(\gamma_n = \lim_{m \rightarrow \infty} \sum_{k=0}^\infty \psi_{nk}(\gamma) \).

We also write \(\hat{B} = (\hat{b}_{nk})_{n,k=0}^\infty \) for the matrix with \(\hat{b}_{nk} = \hat{a}_{nk} - \hat{a}_k \) for each \(n, k \in \mathbb{N}_0 \) and \(\delta = (\delta_n)_{n=0}^\infty \) for the sequence with \(\delta_n = \sum_{k=0}^\infty \hat{a}_k - \gamma_n + \beta(n = 0,1, \ldots) \).

Proof. The conditions in (1) and (2) are immediate consequences of [22, Corollary 3.6(a)]. We define \(P_r: \ell_\infty \rightarrow \ell_\infty \) by \(P_r(\rho) = \rho^{[r]} \) for all \(\rho \in \ell_\infty \) and \(r = 0,1, \ldots \), \(R_r = I - P_r \), and write \(L = L_A \) and \(\hat{B} = \hat{B}^{[r]} \) for the sake of brevity. So we have

\[0 \leq \|L\|_X \leq \chi(L(\hat{B})) \leq \chi(P_r(L(\hat{B}))) \leq \chi(R_r(L(\hat{B}))) \]

by (4.1), [6, Theorem 2.12] and Lemma 3.3(i). Hence, (3) holds.
The conditions in (4) and (6) are immediate consequence of [22, Theorem 3.7 (b), (a)]. Part (5) follows by a similar argument as part (3); we use Lemma 3.4(i) instead of Lemma 3.3(i).

5. CONCLUSION

Fractional difference sets of sequences have been shown up in literature like fractional derivatives and fractional integrals. The gamma function which can be written by the improper integral is used to construct the fractional difference operators. One of the main goal of this study is to consider fractional operators and fractional sets to classical sets of sequences to be compact.

The final corollary of the study gives sufficient conditions when the final set is the of all bounded sequences.

Corollary 5.1 Let \(\lambda \) be one of the spaces \(c_0(\Delta^{(\alpha)}) \) or \(\ell_\infty(\Delta^{(\alpha)}) \).

- Let \(A \in (\lambda, \ell_\infty) \), then \(L_A \) becomes a compact operator if the condition (1) given in Table 3 satisfies.

- Let \(A \in (c(\Delta^{(\alpha)}), \ell_\infty) \), then \(L_A \) is compact if the condition (2) given in Table 3 satisfies.

We should note that the main results of this article was partially presented at International Conference on Mathematics: An Istanbul Meeting for World Mathematicians [43].

ACKNOWLEDGMENTS

This work is a part of the research project with project number 2015-GAP-MÜMF-0017 supported by İzmir Katip Çelebi University Scientific Research Project Coordination Unit.

REFERENCES

