Title: On some Zweier convergent vector valued multiplier spaces

Authors: Ramazan Kama
Received: 2018-12-06 00:00:00
Accepted: 2018-12-31 00:00:00

Article Type: Research Article
Volume: 23
Issue: 4
Month: August
Year: 2019
Pages: 541-548

How to cite
Ramazan Kama; (2019), On some Zweier convergent vector valued multiplier spaces.
Sakarya University Journal of Science, 23(4), 541-548, DOI: 10.16984/saufenbilder.492788
Access link
http://www.saujs.sakarya.edu.tr/issue/43328/492788

New submission to SAUJS
http://dergipark.gov.tr/journal/1115/submission/start
On Zweier convergent vector valued multiplier spaces

Ramazan Kama*1

Abstract

In this paper, we introduce the Zweier convergent vector valued multiplier spaces $M_Z^\infty (\sum T_i x_i)$ and $M_{w2}^\infty (\sum T_i x_i)$. We study some topological and algebraic properties on these spaces. Furthermore, we study some inclusion relations concerning these spaces.

Keywords: vector valued multiplier space, Zweier matrix, summing operator, operator valued series.

1. INTRODUCTION

Let \mathbb{N} and \mathbb{R} be the sets of all positive integers and real numbers, respectively. We shall denote the space of all real valued sequences by $w = \{ x = (x_i) : x_i \in \mathbb{R} \}$.

Any vector subspace of w is called as a sequence space. Let l_∞, c and c_0 denote the spaces of all bounded, convergent and null sequences $x = (x_i)$ with real terms, respectively, normed by $\| x \|_\infty = \sup_{i \in \mathbb{N}} |x_i|$.

A sequence space X with linear topology is called a K-space provided each of the maps $p_i : X \to \mathbb{R}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$. If $x \in X$, then $e^i \otimes x$ denote the sequence with x in the i^{th} coordinate and zero in the other coordinates. If $\mathfrak{I} \subset \mathbb{N}$, $\chi_\mathfrak{I}$ denote the characteristic function of \mathfrak{I} and $x = (x_i)$ is any sequence, $\chi_\mathfrak{I}x$ denote the coordinatewise product of $\chi_\mathfrak{I}$ and x. A sequence space X is monoton if $\chi_\mathfrak{I}x \in X$ for every $\mathfrak{I} \subset \mathbb{N}$ and $x \in X$.

Let X and Y be sequence spaces and $A = (a_{ni})$ be an infinite matrix of real numbers a_{ni}, where $n,i \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X to Y. If for every sequence $x = (x_i) \in X$ the sequence $Ax = (Ax_n)$, the $A-$ transform of $x \in X$ in Y, where $(Ax)_n = \sum k a_{ni} x_i$ for each $n \in \mathbb{N}$. The matrix domain X_A of an infinite matrix A in a sequence space X is defined by

$X_A = \{ x = (x_i) \in w : Ax \in X \}$

* Corresponding Author email: ramazankama@siirt.edu.tr

1 Siirt University, Department of Mathematics and Physical Sciences Education, Siirt, Turkey. ORCID: 0000-0003-3520-1227
which is a sequence space [4, 6, 11].

Şengönül [15] defined the sequence \(y = (y_k) \) which is frequently used as the \(Z^\alpha \)-transformation of the sequence \(x = (x_k) \) i.e.

\[
y_k = ax_k + (1 - a)x_{k-1},
\]

where \(x_{-1} = 0, 1 < k < \infty \) and \(Z^\alpha \) denotes the matrix \(Z^\alpha = (z_{ij}) \) defined by

\[
(z_{ij}) = \begin{cases}
\alpha, & \text{if } i = j, \\
1 - \alpha, & \text{if } i - 1 = j, \\
0, & \text{otherwise}.
\end{cases}
\]

Following Başar and Altay [5], Şengönül [15] introduced the Zweier sequence spaces \(Z \) and \(Z_0 \) as follows:

\[
Z = \{ x = (x_k) \in w : Z_p x \in c \},
\]

\[
Z_0 = \{ x = (x_k) \in w : Z_p x \in c_0 \}.
\]

For details on Zweier sequence spaces we also refer to [8–10].

Let \(X, Y \) be normed spaces, \(L(X, Y) \) be also the space of continuous linear operators from \(X \) into \(Y \) and \(\sum T_i \) be a series in \(L(X, Y) \), \(\lambda \) be a vector space of \(X \)-valued sequences which contains \(c_0(X) \), the space of all sequences which are eventually 0. By \(l_\infty(X) \) and \(c_0(X) \), we denote the \(X \)-valued sequence spaces of bounded and convergence to zero, respectively. The series \(\sum T_i \) is \(\lambda \)-multiplier convergent if the series \(\sum T_i x_i \) converges in \(Y \) for every sequence \(x = (x_i) \in \lambda \). The series \(\sum T_i \) is \(\lambda \)-multiplier Cauchy if the series \(\sum T_i x_i \) is Cauchy in \(Y \) for every sequence \(x = (x_i) \in \lambda \). For more information about vector valued multiplier spaces and multiplier convergent series, see [2, 7, 8, 13].

Let \(\sum T_i \) be a series in \(L(X, Y) \). Then, we will define the spaces

\[
M^\infty_w(\sum T_i x_i) = \{ x = (x_i) \in l_\infty(X) : Z - \sum T_i x_i \text{ exists} \}
\]

and

\[
M^\infty_w(\sum T_i x_i) = \{ x = (x_i) \in l_\infty(X) : Z - \sum T_i x_i \text{ exists} \}
\]

endowed sup norm, where

\[
Z - \sum T_i x_i = \lim_{n \to \infty} (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^\alpha + \alpha \sum_{i=1}^{n} T_i x_i^\alpha
\]

and

\[
wZ - \sum T_i x_i = \lim_{n \to \infty} (1 - \alpha) \sum_{i=1}^{n-1} f(T_i x_i^\alpha) + \alpha \sum_{i=1}^{n} f(T_i x_i^\alpha)
\]

\(f \in Y^* \) (dual of \(Y \)). Notice that \(M^\infty_w(\sum T_i x_i) \subset M^\infty_w(\sum T_i x_i) \subset l_\infty(X) \).

In [1, 12], authors introduced some subspaces of \(l_\infty \) by means of multiplier convergent series and studied some properties of this spaces. Also, in [3, 14], the above spaces studied in the case of some convergence.

In this paper, we will show that the spaces \(M^\infty(\sum T_i x_i) \) and \(M^\infty_w(\sum T_i x_i) \) are Banach spaces by means of \(c_0(X) \)-multiplier convergent series. Also, we will give some characterizations of \(l_\infty(X) \) and \(c_0(X) \)-multiplier convergent series by using summing operators related to the series \(\sum T_i \).

2. THE ZWEIER SUMMABILITY SPACE

Before starting this section, we give the following proposition will be used for establishing some results of this study:

Proposition 2.1. \(\sum T_i \) \(c_0(X) \)-multiplier convergent series if and only if the set
\[E = \left\{ \sum_{i=1}^{n} T_i x_i : \|x_i\| \leq 1, n \in \mathbb{N} \right\} \]

is bounded [14].

The following theorem gives the completeness of the space \(M_∞^p(\sum_i T_i x_i) \).

Theorem 2.2. Let \(X \) and \(Y \) are normed spaces and \(\sum_i T_i \) is a series in \(L(X,Y) \). If

(i) \(X \) and \(Y \) are Banach spaces,

(ii) The series \(\sum_i T_i \) c\(_0\)(\(X\)) - multiplier convergent,

then \(M_∞^p(\sum_i T_i x_i) \) is a Banach space.

Proof. Since the series \(\sum_i T_i \) c\(_0\)(\(X\)) - multiplier convergent, by Proposition 2.1, there exists \(M > 0 \) such that

\[M = \sup \left\{ \left\| \sum_{i=1}^{n} T_i x_i \right\| : \|x_i\| \leq 1, n \in \mathbb{N} \right\}. \]

We suppose that \((x^m)\) be a Cauchy sequence in \(M_∞^p(\sum_i T_i) \). Since \(M_∞^p(\sum_i T_i) \subset l_∞(X) \) and \(l_∞(X) \) is a Banach space (since \(X \) is a Banach space), there exists \(x = (x_i^0) \in l_∞(X) \) such that \(\lim_{m \to \infty} x^m = x^0 \). We will show that \(x^0 \in M_∞^p(\sum_i T_i) \).

We take \(\epsilon > 0 \). Then, there exists \(m_0 \in \mathbb{N} \) such that

\[\|x^m - x^0\| < \frac{\epsilon}{3M} \]

for \(m \geq m_0 \). Since \(\frac{3M}{\epsilon} \|x^m - x^0\| < 1, \)

\[\frac{3M}{\epsilon} \left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m - x_i^0 \right\| + \alpha \sum_{i=1}^{n} T_i x_i^m - x_i^0 \right\| \leq M \]

and so

\[\left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m - x_i^0 \right\| + \alpha \sum_{i=1}^{n} T_i x_i^m - x_i^0 \right\| \leq \frac{\epsilon}{3} \]

for \(m \geq m_0 \) and \(n \in \mathbb{N} \). On the other hand, since \((x^m)\) is a Cauchy sequence in \(M_∞^p(\sum_i T_i) \) there exists sequence \((y_m) \subset Y \) such that

\[\left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m + \alpha \sum_{i=1}^{n} T_i x_i^m - y_m \right\| < \frac{\epsilon}{3} \]

for \(n \geq n_0 \). If we take \(p > q \geq m_0 \), from (2) and (3), then we have \(\|y_p - y_q\| < \epsilon \). Hence, \((y_m)\) is a Cauchy sequence. Let \(y_m = y_0 \) and suppose that \(\|y_m - y_0\| < \frac{\epsilon}{3} \). Consequently,

\[\left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m + \alpha \sum_{i=1}^{n} T_i x_i^m - y_0 \right\| \leq \left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m - x_i^0 \right\| + \alpha \sum_{i=1}^{n} T_i x_i^m - x_i^0 \right\| + \left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i x_i^m + \alpha \sum_{i=1}^{n} T_i x_i^m - y_m \right\| + \|y_m - y_0\| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \]

for \(n \geq n_0 \). This means that \(x^0 \in M_∞^p(\sum_i T_i) \).

In the next theorem we show that the converse of above theorem is hold. But, it does not need to be the spaces \(X \) and \(Y \) are complete.

Theorem 2.3. If \(M_∞^p(\sum_i T_i) \) is a Banach space, then \(\sum_i T_i \) c\(_0\)(\(X\)) - multiplier convergent series.

Proof. We consider the sequence \(x = (x_i) \in c_0(X) \). From the closedness of \(M_∞^p(\sum_i T_i) \) and

Sakarya University Journal of Science 23(4), 541-548, 2019
Then the series $\sum_i T_i x_i$ is subseries Zweier convergent because of $c_0(X)$ is a monoton space. So, $\sum_i T_i x_i$ is weakly subseries Zweier convergent series. Using Orlicz-Pettis theorem ([1, Theorem 4.1]), we obtain that the series $\sum_i T_i x_i$ is subseries norm convergent, and hence $\sum_i T_i$ is $c_0(X)$ multiplier convergent.

Remark 2.4. (1) In Theorem 2.2, if Y is not a Banach space, then there exists a sequence $y = (y_i)$ in Y and $F \in Y^* \setminus Y$ such that

$$||y|| < \frac{1}{3^i} \text{ and } \sum_i y_i = F$$

for every $i \in \mathbb{N}$. Also, note that $Z - \sum_i y_i = F$. We take $x_0 \in X$ with $||x_0|| = 1$. By Hahn-Banach theorem, we choose $x_0^* \in X^*$ such that $x_0^*(x_0) = ||x_0||$. We denote sequence $T_i \in L(X,Y)$ by $T_i x = x_0^* (x) 3^i y_i$ for each $i \in \mathbb{N}$. It is obtain that $\sum_i T_i$ is $c_0(X)$ multiplier Cauchy. Consider the sequence $x = (x_0/3^i)$ in $c_0(X)$. Then $x^n = \sum_{i=1}^n e^i \otimes x_0 /3^i \in M_Z^\infty (\sum_i T_i)$ for every $n \in \mathbb{N}$ and $x^n \to x_0/3^i$, but since

$$Z - \sum_i T_i x_i = Z - \sum_i \frac{1}{3^i} x_0^* (x_0) 3^i y_i = Z - \sum_i y_i = F,$$

$M_Z^\infty (\sum_i T_i)$ is not a Banach space.

(2) It is well know that if $\lim x_i = x_0$, then $Z - \lim x_i = x_0$, and also $\sum_i x_i = x_0$, then $Z - \sum_i x_i = x_0$. Therefore, if

$$M^\infty (\sum_i T_i) = \left\{ x = (x_i) \in l_\infty(X) : \exists T_i x_i \text{ exists} \right\},$$

then we obtain the inclusion $M^\infty (\sum_i T_i) \subset M_Z^\infty (\sum_i T_i)$.

(3) Let X and Y be normed spaces. We denote the summing operator associate with the series $\sum_i T_i$

$$S: M_Z^\infty (\sum_i T_i) \to Y, \quad S(x) = Z - \sum_i T_i x_i.$$

Then, the summing operator S is continuous if and only if the series $\sum_i T_i$ is $c_0(X)$ multiplier Cauchy. Let us suppose that S is continuous. Since $c_0(X) \subset M_Z^\infty (\sum_i T_i)$, and if $x = (x_i) \in c_0(X)$ with $||x|| \leq 1$ such that $x_i = 0$ for all $i > k$, we have that

$$||S_1 x_1 + \cdots + S_k x_k|| = ||Sx|| \leq ||S||.$$

Therefore

$$\sup_k \left\{ \left\| \sum_{i=1}^k T_i x_i \right\| : \left\| x_i \right\| \leq 1, k \in \mathbb{N} \right\} \leq ||S||,$$

and hence, the series $\sum_i T_i$ is $c_0(X)$ multiplier Cauchy by Proposition 2.1.

Now, suppose that $\sum_i T_i$ is $c_0(X)$ multiplier Cauchy. Then, by Proposition 2.1, the set $E = \{ ||\sum_{i=1}^k T_i x_i|| : ||x_i|| \leq 1, k \in \mathbb{N} \}$ is bounded. We take $||e|| \leq K$ for every $e \in E$. Let $x = (x_i) \in M_Z^\infty (\sum_i T_i)$ with $||x|| \leq 1$. Thus $Z - \sum_{i=1}^k T_i x_i$ exists, and hence

$$||S_k(x)|| = \left\| Z - \sum_{i=1}^k T_i x_i \right\| \leq K$$

for $k \in \mathbb{N}$. This means that S is continuous.

(4) We suppose that Y is a Banach space. Then, we will show that the summing operator S is compact if and only if the series $\sum_i T_i$ is $l_\infty(X)$ multiplier convergent. Indeed, let S be compact and $x = (x_i) \in l_\infty(X)$. If we define the following set that is bounded on the space $M_Z^\infty (\sum_i T_i)$

$$M = \left\{ \sum_{i \in \mathbb{N}} e^i \otimes x_i : \exists \text{ is finite, } \left\| x_i \right\| \leq 1 \right\},$$

then $S(M) = Z - \sum_{i \in \mathbb{N}} T_i x_i$ is finite, $||x_i|| \leq 1$ is relatively compact. Hence, the series $\sum_i T_i x_i$ is subseries norm Zweier summability ([13, Theorem 2.48]), and so the series $\sum_i T_i x_i$ is
subseries norm convergent by Orlicz-Pettis theorem. That is \(\sum_i T_i \) is \(l_\infty(X) \) – multiplier convergent series.

Conversely, let \(\sum_i T_i \) is \(l_\infty(X) \) – multiplier convergent series, then \(Z - \sum_i T_i x_i \) is uniformly convergent series for \(\|x_i\| \leq 1 \) ([13, Corollary 11.11]). If we define the operators \(S_n: M_\infty^w(\sum_i T_i) \rightarrow Y \) by \(S_n(x) = Z - \sum_{i=1}^n T_i x_i \) for \(n \in \mathbb{N} \), then

\[
\|S_n - S\| = \left\| Z - \sum_{i=1}^n T_i x_i - Z - \sum_{i=n+1}^\infty T_i x_i \right\|
= \left\| Z - \sum_{i=n+1}^\infty T_i x_i \right\| \rightarrow 0
\]

for \(\|x_i\| \leq 1 \), as \(n \rightarrow \infty \). Therefore, \(S \) is compact.

By Theorem 2.2, Theorem 2.3 and Remark 2.4, we can obtain the following corollary:

Corollary 2.5. If \(X \) and \(Y \) are Banach spaces and \(\sum_i T_i \) is a series in \(L(X,Y) \), then the following statements are equivalent:

(i) \(\sum_i T_i \) \(c_0(X) \) – multiplier convergent series.

(ii) \(M_\infty \sum_i T_i \) is a Banach space.

(iii) \(c_0(X) \subseteq M_\infty \sum_i T_i \).

(iv) \(M_\infty^w(\sum_i T_i) \) is a Banach space.

(v) \(c_0(X) \subseteq M_\infty^w(\sum_i T_i) \).

3. THE WEAK ZWEIER SUMMABILITY SPACE

In this section, we will extend that to the space \(M_\infty^w(\sum_i T_i) \) some of the conclusions obtained in the preceding section for the space \(M_\infty^w(\sum_i T_i) \). We begin this section by the following theorem.

Theorem 3.1. If \(X \) and \(Y \) are Banach spaces and the series \(\sum_i T_i \) \(c_0(X) \) – multiplier convergent, then \(M_\infty^w(\sum_i T_i x_i) \) is a Banach space.

Proof. Let \((x^m) \subset M_\infty^w(\sum_i T_i x_i) \) be a Cauchy sequence. Then, \(\lim_{m \to \infty} x^m = x^0 \) in \(l_\infty(X) \). We will prove that \(x^0 \in M_\infty^w(\sum_i T_i) \).

If the proof of Theorem 2.2 is followed, then there exists \(m_0 \in \mathbb{N} \) such that

\[
\left\| (1 - \alpha) \sum_{i=1}^{n-1} T_i (x_i^m - x_i^0) + \alpha \sum_{i=1}^n T_i (x_i^m - x_i^0) \right\| < \frac{\varepsilon}{3}
\]

for \(m \geq m_0 \) and \(n \in \mathbb{N} \). If \(p > q \geq m_0 \) are fixed, then a functional \(f \in S_Y^* \) (unit sphere in \(Y^* \)) can be found such that \(\|y_p - y_q\| = |f(y_p) - f(y_q)| \).

Since \((x^m) \) is a Cauchy sequence in \(M_\infty^w(\sum_i T_i) \), there exists sequence \((y_m) \subset Y \) such that

\[
\left\| (1 - \alpha) \sum_{i=1}^{n-1} f(T_i x_i^m) + \alpha \sum_{i=1}^n f(T_i x_i^m) - f(y_m) \right\| < \frac{\varepsilon}{3}
\]

for \(n \geq n_0 \). From (4) and (5), we have \(\|y_p - y_q\| < \varepsilon \). Thus, \((y_m) \) is a Cauchy sequence. Since \(Y \) is a Banach space, there exists \(y_0 \in Y \) such that \(\|y_m - y_0\| < \frac{\varepsilon}{3} \). Finally, we obtain that the following inequalities,

\[
\left| (1 - \alpha) \sum_{i=1}^{n-1} f(T_i x_i^0) + \alpha \sum_{i=1}^n f(T_i x_i^0) - f(y_0) \right| \\
\leq \left| (1 - \alpha) \sum_{i=1}^{n-1} f(T_i (x_i^m - x_i^0)) + \alpha \sum_{i=1}^n f(T_i (x_i^m - x_i^0)) \right|
\]

Sakarya University Journal of Science 23(4), 541-548, 2019
Ramzan Kama
On some Zweier convergent vector valued multiplier spaces

As we did Remark 2.4 (3), one can see that the summing operator S is continuous if and only if the series $\sum_i T_i$ is $c_0(X) -$ multiplier Cauchy.

(4) Let Y be a Banach space. If S is compact, from Remark 2.4 (4), then the set $S(M)$ is weakly relatively compact, and hence $\sum_i T_i$ is $l_\infty(X) -$ multiplier convergent series. On the other hand, let us suppose that Y is complete and the series $\sum_i T_i$ is $l_\infty(X) -$ multiplier convergent. Then, $wZ - \sum_i T_i x_i$ is uniformly convergent for $x_n = 1$ ([13, Corollary 11.11]). Therefore, we have that

$$\|S_n - S\| = \left\|wZ - \sum_{i=1}^n T_i x_i - wZ - \sum_{i=n+1}^\infty T_i x_i\right\| \rightarrow 0$$

for $\|x_n\| \leq 1$, as $n \rightarrow \infty$, where the operators $S_n: M^\infty_{wZ}(\sum_i T_i) \rightarrow Y$ is defined by $S_n(x) = wZ - \sum_{i=1}^n T_i x_i$ for $n \in N$. This implies that S is compact.

By the previous theorems and remark above, we can give the following corollaries:

Corollary 3.4. If X and Y are Banach spaces and $\sum_i T_i$ is a series in $L(X,Y)$, then the following conditions are equivalent:

(i) $\sum_i T_i$ is $c_0(X) -$ multiplier convergent series.

(ii) $M^\infty_w \sum_i T_i$ is a Banach space.

(iii) $c_0(X) \subseteq M^\infty_w \sum_i T_i$.

(iv) $M^\infty_{wZ}(\sum_i T_i)$ is a Banach space.

(v) $c_0(X) \subseteq M^\infty_{wZ}(\sum_i T_i)$.

Corollary 3.5. If Y is Banach space, then the following are equivalent:

(i) S is compact.

(ii) S is a weakly compact.

(iii) $\sum_i T_i$ is $l_\infty(X) -$ multiplier convergent series.
Finally, we will give a sufficient condition for the equivalence of both spaces, which are defined in the introduction.

Proposition 3.6. Let X and Y be normed spaces. If $\sum T_i x_i$ is $l_\infty(X) -$ multiplier Cauchy series, $M^\infty_Z(\sum T_i) = M^\infty_{wZ}(\sum T_i)$.

Proof. We prove that the inclusion $M^\infty_{wZ}(\sum T_i) \subset M^\infty_Z(\sum T_i)$ hold. If we take $x = (x_i) \in M^\infty_{wZ}(\sum T_i)$, then there exists $y_0 \in Y$ such that
\[
Z - \sum_i f(T_i x_i) = f(y_0)
\]
for every $f \in Y^\ast$. Also, since the series $\sum T_i x_i$ is $l_\infty(X) -$ multiplier Cauchy, the series $\sum T_i x_i$ is Cauchy in Y. Thus, there exists $F \in Y^{**}$ such that
\[
Z - \sum_i T_i x_i = F.
\]
If consider the uniqueness of limit, then we have $F = y_0$. Thus, $x = (x_i) \in M^\infty_Z(\sum T_i)$.

Acknowledgments

This work was supported by the Siirt University Research Fund with Project Number 2018-SİÜEĞİT-041.

4. REFERENCES

