Annealing time effect on the optical properties of Zn(O,OH,S) films onto ZnO seed layer under un-vacuum ambient

Fatma Özütok*1 and Emin Yakar2

Abstract

In this study, Zn (O,OH,S) films were synthesized onto ZnO seed layers by chemical bath deposition, which were annealed at 500 °C. The differences of structural, morphological and detailed optical properties of the films were investigated depending on the annealing time (between 30 min. and 90 min.). While samples of 30 min and 90 min. showed decomposed structures, sample of 60 min. showed different dimensions of nano-flower structures. Although all films had ZnO-hexagonal crystal structure, the most obvious ZnS-related peaks were observed in the sample of 90 min. Optical absorption edge was shifted at 362 nm from Uv-Vis spectroscopy. Although ZnO, Zn(OH)2 vibration related peaks were so sharp, ZnS vibration peaks were so weak for all samples from FTIR. The PL intensities were differential depending on the annealing time but defect state-corresponding peaks were similar for each films.

Keywords: Zn(O,OH,S) film, ZnO seed layer, photoluminescence spectroscopy, FTIR, optical transparency

1. INTRODUCTION

Recently, Cu(In,Ga)(S,Se)2 (CIGS)- solar cells are so active research topics that has been high efficiency values over 20 %, cost-cutting effects in the industrial production and an alternative material for traditional Si-solar cells [1,3]. (CIGS)- solar cells have a layer that called as ‘buffer layer’ which has a relatively critical precaution for reducing the interface recombination, decreasing the mechanical tension stress between absorber layer/TCO electrode and providing optimal band alignment throughout the junction. CdS film preferred as a buffer layer between i:ZnO window and CIGS absorber is produced by frequently atomic layer deposition (ALD) or chemical bath deposition (CBD) [4,5]. In the buffer layer studies, cadmium-free alternative material necessity occurs due to CdS has high toxicity, the narrow band gap energy (~2.4 eV) and high interface recombination between the absorber and window interface [6]. Zn-component materials (ZnO, ZnS and ZnSe etc.) and their mixing materials are preferred as cadmium free alternative materials which have minimum environmentally harmful components, low optical absorption values and abundant in nature [7]. Specific amount of hydroxyl groups and impurity containing Zn(O,OH,S) film are so attractive due to their prior and tuning properties compared to other Zn-constituent materials such as large band gap energy (Eg ~2.6-3.8 eV), reduce to photocurrent loss in the short-wavelength region, high optical transparency in the UV-Vis area (>75 %) and quantum efficiency enhancing in the blue wavelength region [8].

Much more studies have been reported in the literature about ZnO- and ZnS- films which have been produced by chemical bath, spin coating, ultrasonic spray pyrolysis, atomic layer deposition (ALD) or chemical vapor deposition (CVD) [9,11]. Among them, chemical bath deposition has beneficial properties such as simple set-up, short time of chemical reactions, non-expensive, non-vacuum ambient and producible even at low temperatures (<100 °C) [12]. On the other hand,
keeping under control of film growth and adherent/homogenous film production are necessary to increase buffer layer efficiency. In this study, Zn(O,OH,S) films were synthesized onto ZnO seed layer by modified chemical bath deposition and annealing temperature was optimized at 500 °C. Using of ZnO seed layer can reduce the lattice mismatch between growing layer and substrate. Additionally, annealing time is a key parameter for improving the crystallinity and removing adsorbed impurities on the surface. Therefore, surface modification is ensured and adherent films are obtained. Structural and optical properties and surface morphology of Zn(O,OH,S) films were investigated depending on the three annealing times, 30 min., 60 min. and 90 min.

2. EXPERIMENTAL

Chemical bath deposition (CBD) technique was used for the synthesis of ZnO seed layer and Zn(O,OH,S) films. All reagents were of analytical grade and used without further purification. Amorphous glass cleaning procedure (ethanol, acetone and distilled water, respectively) was applied. ZnO seed layer preparation and ZnO film growth details were reported with modified chemical bath in our previous study [13]. In the 100 ml distilled water including sulfide bath, 0.1 M thiourea and 0.1 M zinc-acetate dihydrate were used as S-source and Zn-source, respectively. This yellow-colored solution was mixed in an ultrasonic bath at 60±5 °C. ZnO seed layers were immersed into mixing solution while enough ammonia was dropped and optimum dipping time was determined as 4 minutes. After the film deposition, all films dried at room temperature and then annealed at 500 °C. Annealing times were chosen as 30 min., 60 min. and 90 min., respectively. The possible chemical reactions of Zn(O,OH,S) film growth was given by the following equations; Zn(CH₃COO)₂ + 2H₂O + NH₃ → [Zn(NH₃)₂][²+ 2 (CH₃COO)₂⁻] (1) NH₃+H₂O ↔ NH₄+ + OH⁻ (2) ZnO+H₂O↔Zn(OH)₂ (3) Zn(OH)₂↔Zn²⁺+2OH⁻ (4) SC(NH₂)₂+2OH⁻↔SH⁺ + CH₂N₂+H₂O (5) SH⁺+OH⁻↔S²⁻+H₂O (6) 2Zn²⁺+S²⁻+4(OH⁻) ↔ 2ZnO+ S+H₂O or Zn²⁺ + S²⁻ ↔ ZnS (7) In the Zn(O,OH,S) film growth process by CBD, Zn(OH)₂ layer and Zn(S, O) layer were presented and with removing the upper Zn(OH)₂ layer causes an improvement of buffer layer which investigated by Izaki [14]. Structural parameters of films were carried out by Rigaku SmartLab X-ray Diffractometer with CuKα (1.5406 Å) radiation with powder method and step size was 0.0130 which was operated under 40 mA and 45 kV. Average crystalline sizes were estimated by Debye-Scherer formulation which is given at below; (D=0.94/λβcosθ) (8) The surface morphologies and film composition of the samples were used by using JEOL JSM-7100 F SEM scanning electron microscopy and OXFORD Instruments X-Max EDX energy-dispersive x-ray spectroscopy, respectively which has been attached to each other. Optical properties (absorbance, transmittance, direct band gap energy) were investigated by Analytic Jena Uv-Vis spectroscopy which was recorded in the range of 300-900 nm. Direct band gap energies of the samples were calculated by Perrson model. At room temperature, photoluminescence intensities were measured by Quanta Master 400 Spectrofluorometer at 245 nm. excitation wavelength. FTIR (Fourier Transform Infrared Spectroscopy) measurements were performed on VERTEX 70 model spectrophotometer with an attenuated total reflectance (ATR) accessory between 400 and 4000 cm⁻¹ (Bruker, Germany).

3. RESULTS AND DISCUSSION

In Fig.1., EDX analysis showed that all samples had different percentage of zinc, sulfur and oxygen related elemental peaks as expected in the selected region on the film surface. No impurity elements were detected while much more Zn-elemental peaks were observed in 60 min.-annealing samples, much more S-elemental peaks were observed in 90-min.-annealing samples. Additionally, annealing time had no effect on the oxygen elemental percentage from EDX analysis.
The XRD profiles of samples were given in Fig.2. In the range of 20°=20°-30°, a swelling was observed for all samples due to the amorphous glass substrate. The presence of (100), (002) and (101) peaks for all polycrystalline films represented ZnO-hexagonal crystal structure (JCPDS card no:36-1451), indicating that the presence of Zn(OH) in the range of 20=30°-40°. As seen in Fig. 3., all films had different XRD intensities and full width at half maximum (FWHM) depending on the annealing time. There was no ZnS-related peak detected in 30 min- and 60 min.-annealing samples. In spite of this, the most obvious ZnS-related peaks (JCPDS card no: 05-0566) were observed in sample of 90 min-annealing which indicated that enough amount S-inclusion might create weak Zn(O,S) host matrix [15]. While 30 min.-annealing samples had (100) preferential orientation, 60 min. and 90 min.-annealing samples had (101) preferential orientation. However, (002) and (101) directions for 30 min.-annealing samples and (002) and (100) directions for 60 min.- and 90 min.-annealing samples might affect the orientation. Two suggestions were given in the literature about choosing both c- and a- axis orientation. One was suggested by Mathew et.al. that high boiling points solvents cause both of orientation and (002) direction was the most thermodynamically favorable growth [16]. Another was reviewed by Znaidi et.al. that surface energy of (100) orientation was higher than (002) orientation so it was observed that (100) orientation development [17]. Having the same preferential orientation samples 60 min.- and 90 min.- annealing samples showed that intensity increased with increasing FWHM and decreasing crystallinity and also the smallest grain sizes were obtained in 60 min. annealing samples.
Annealing time effect on the optical properties of Zn(O,OH,S) films onto ZnO seed layer under un-vacuum ambient…

Fig. 4. (a) Cross section SEM image of Zn(O,OH,S) film and SEM images of Zn(O,OH,S) films for (b) 30 min. (c) 60 min. and (d) 90 min. annealing time, respectively.

The transmission spectra of Zn(O,OH,S) films for different annealing times were shown in Fig. 5. Optical absorption edge was almost coordinated at 362 nm. (3.42 eV) for all films. It was observed that red shift occurred compared to ZnO seed layer (370 nm. ~3.35 eV) [ref 13] due to surface kinetic processes which may affect the homogeneous film growth.

It was determined that the average value of optical transmission increased with increasing of annealing time, compatible to similar studies which was attributed to the surface impurities decreased with increasing film surface temperature [19].

A lot of band gap measurement and evolution methods have been proposed in the literature (Tauc model [20], Viezbicke fitting model [21], Kubelka–Munk function with Tauc model [22] and Kim fitting model with BM effect [23] and etc.). Among them, the equation of Perrson model [24];

\[
(\alpha h\nu) = A[\nu-E_{g,ZnO}]^{1/2} + B[\nu-E_{g,ZnO}+\Delta E_g(x)]^{1/2}
\]

was so proper for Zn(O,OH,S) films in where \(\Delta E_g(x) \) was a fit parameter (\(x \sim 0.5 \)) which varies as a function of the (S/ S+O) ratio. Band gap values were changed between 2.9±0.1 eV and 3.1±0.1 eV range. This band gap variation phenomenon was investigated by different research groups. Hydroxyl groups may affect the band gap values but it has been still unclear which forms in film growth [25]. A study received by Mathew that the amorphous nature of ZnO decreased as the temperature increases so the band gap energies would decrease [16]. Additionally, optical band gap changes depending on \(\text{O}_2 \) vacancies and Zn interstitial sites which given by Abdallah [26].
Annealing time effect on the optical properties of Zn(O,OH,S) films onto ZnO seed layer under un-vacuum ambient...

FTIR spectrum gives a characteristic behavior about the vibration of atoms/molecules in the crystal structure. As can be seen in Fig. 6, hydroxyl (O-H) group stretching and bending vibrations were not observed at 3500-3900 cm\(^{-1}\) and 1400-1757 cm\(^{-1}\) respectively [27]. Very sharp peaks were determined at 410 cm\(^{-1}\), 765 cm\(^{-1}\), and 900 cm\(^{-1}\) which were assigned to Zn-O, OH-Zn-OH bonding and M-O-M bonding vibrations [28,29,30]. Much more weak peaks were observed at 685 cm\(^{-1}\) and 2380 cm\(^{-1}\) which were attributed to Zn-S stretching and absorption of atmospheric CO\(_2\) by a metallic cation, respectively [31,32]. These results show that proof of Zn(O,OH,S) films present onto ZnO seed layer.

The photoluminescence (PL) spectra of Zn(O,OH,S) films were shown in Fig.7. in the range 300-650 nm. at room temperature. Detailed elemental vacancy investigation was realized by PL measurements. As the annealing time increased, the luminescence intensity decreased between in 300-420 nm. wavelength range which indicated that decreasing density of the defects, as explained by Lu [33]. The minimum PL intensity was observed for 60-min. annealing sample which originated from Zn-rich ambient. Additionally, the PL intensities were different whereas the peak positions (defect types) were similar for all samples as expected. Blue emission [447 nm.(2.77 eV) and 467 nm.(2.65 eV)] and green emission [488 nm.(2.54 eV) and 556 nm.(2.23 eV)] were observed which can be seen in Fig.7. Generally, a blue emission was centered at between 420-450 nm. and 440-480 nm. for ZnS and ZnO films, respectively [34,35]. This ZnO type-blue emission behaviour was consistent with XRD results. Blue emission that enhanced CIGS-solar cell performance which was attributed to radiation defects relevant to interface traps on grain boundary [36]. Very strong green emission (deep level emission) was observed at 2.54 eV which was attributed singly ionized oxygen vacancy site and its formation energy was lower than Zn, interstitial site [37]. Another contribution to green emission came from very weak peak (2.23 eV) that would be indicating the presence of Zn(OH)\(_2\). The green emission arised from that holes can recombine with electrons in the conduction band and/or shallow donor states which have been trapped at oxygen vacancies.

4. CONCLUSION

This study reported the influence annealing time on the surface morphology, crystallization, band gap energy and photoluminescence properties of chemical bath deposited Zn(O,OH,S) film onto ZnO seed layer. Annealing temperature was optimized at 500 °C and annealing times varied as 30, 60 and 90 minutes. The XRD results show that all films have ZnO-hexagonal crystal structure with different preferential orientations. Nanoflower formations were observed in 60 min.-annealing samples with minimum PL intensities. Absorption edge was coordinated at 362 nm. for all films and optical transparency decreased with increasing annealing time. FTIR spectrum was an evidence about Zn(O,OH,S) film formation. In the literature, the intensity of near band emission was varying with temperature and the increase in the deep level PL peak can cause a decrease in the diffusion length from PL spectrums of Zn(O,OH,S) films. To summarize, annealing time severely affected on the
Zn(O,OH,S) film growth thereby structural and optical properties.

ACKNOWLEDGMENTS

This study is supported by Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit. Project Number: FBA-2016-1051.

REFERENCES

