Some sums related to the terms of generalized Fibonacci autocorrelation sequences \(\left\{ a_{k,n}(\tau) \right\}_\tau^\infty \)

Neşe Ömür\(^1\), Sibel Koparal\(^2\)

ABSTRACT

In this paper, we give the terms of the generalized Fibonacci autocorrelation sequences \(\left\{ a_{k,n}(\tau) \right\}_\tau^\infty \) defined as
\[
a_{k,n}(\tau) := a_n(U_k, \tau)
\]
and some interesting sums involving terms of these sequences for an odd integer number \(k \) and nonnegative integers \(\tau, n \).

Keywords: Fibonacci numbers, generalized Fibonacci autocorrelation sequences, sums

\[
\left\{ a_{k,n}(\tau) \right\}_\tau^\infty \text{ geneleştirilmiş Fibonacci otokorelasyon dizilerinin terimlerini içeren bazı bağıntılar}
\]

ÖZ

Bu makalede, \(k \) tek sayı ve \(\tau, n \) negatif olmayan tam sayı olmak üzere
\[
a_{k,n}(\tau) := a_n(U_k, \tau)
\]
terimlerine sahip \(\left\{ a_{k,n}(\tau) \right\}_\tau^\infty \) geneleştirilmiş Fibonacci otokorelasyon dizileri ve bu dizilerin terimlerini içeren bazı toplamlar verildi.

AnahtarKelimeler: Fibonacci sayıları, geneleştirilmiş Fibonacci otokorelasyon dizileri, toplamlar

\(^{*}\) Sorumlu Yazar / Corresponding Author
1.2 Koçaeli Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Koçaeli - neseomur@kocaeli.edu.tr & sibel.koparal@kocaeli.edu.tr
1. **GİRİŞ (INTRODUCTION)**

For \(a, b, p, q \in \mathbb{R} \), the second order sequence \(\{W_n(a, b; p, q)\} \) is defined for \(n > 0 \) by

\[
W_{n+1}(a, b; p, q) = pW_n(a, b; p, q) - qW_{n-1}(a, b; p, q)
\]

in which \(W_0(a, b; p, q) = a \), \(W_1(a, b; p, q) = b \).

When \(q = -1 \), \(W_n(0, 1; p, -1) = U_n \) and \(W_n(2, p; p, -1) = V_n \). When \(p = 1 \), \(U_n = F_n \) (n-th Fibonacci number) and \(V_n = L_n \) (n-th Lucas number).

If \(\alpha \) and \(\beta \) are the roots of equation \(x^2 - px - 1 = 0 \) the Binet formulas of the sequences \(\{U_n\} \) and \(\{V_n\} \) have the forms

\[
U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta} \quad \text{and} \quad V_n = \alpha^n + \beta^n,
\]

respectively.

E. Kilç and P. Stanica [1], derived the following recurrence relations for the sequences \(\{U_{k_n}\} \) and \(\{V_{k_n}\} \) for \(k \geq 0 \), \(n > 0 \).

\[
U_{k(n+1)} = V_kU_{k_n} + (-1)^{k+1}U_{k(n-1)}
\]

and

\[
V_{k(n+1)} = V_kV_{k_n} + (-1)^{k+1}V_{k(n-1)},
\]

where the initial conditions of the sequences \(\{U_{k_n}\} \) and \(\{V_{k_n}\} \) are \(0 \), \(U_k \) and \(2 \), \(V_k \) respectively. The Binet formulas of the sequences \(\{U_{k_n}\} \) and \(\{V_{k_n}\} \) are given by

\[
U_{k_n} = \frac{\alpha^{k_n} - \beta^{k_n}}{\alpha - \beta} \quad \text{and} \quad V_{k_n} = \alpha^{k_n} + \beta^{k_n},
\]

respectively.

P. Filipponi and H.T. Freitag [2] defined the terms \(a_n(S_i, \tau) \) of the autocorrelation sequences of any sequence \(\{S_i\}_{i=0}^{\infty} \) as

\[
a_n(S_i, \tau) := \sum_{i=0}^{n} S_{i+S_{i+\tau}}, \quad (0 \leq \tau \leq n), \tag{1}
\]

where the subscript \(i + \tau \) must be considered as reduced modulo \(n + 1 \) and \(n \) are nonnegative integers. It is clearly that autocorrelation sequences differ from the definition of cyclic autocorrelation function for periodic sequences with period \(n+1 \) [3].

For positive integer number \(\tau \), the authors gave

\[
a_n(S_i, \tau) = a_n(S_i, n - \tau + 1)
\]

and

\[
a_n(S_i, \tau) = \sum_{i=0}^{n-\tau} S_{i+S_{i+\tau}} + \sum_{i=0}^{\tau-1} S_{i+n-\tau+i}.
\]

The terms of the Fibonacci autocorrelation sequences \(\{a_{k,n}(\tau)\}_{\tau}^{\infty} \) were defined as

\[
a_n(\tau) := a_n(F, \tau)
\]

and they obtained some sums involving the terms \(a_n(\tau) \) as follows:

\[
\sum_{i=0}^{n} a_n(i) = (F_{n+2} - 1)^2,
\]

\[
10 \sum_{i=0}^{n} a_n(i)
\]

\[
= \begin{cases} 2L_{3n+2} - 5F_{2n+2} + L_{n+1}, & \text{if } n \text{ is even} \nonumber \\ 2L_{3n+2} - L_{n+1}(5F_{n+1} - 1), & \text{if } n \text{ is odd} \end{cases}
\]

Inspiring by studies in [2], we consider subsequence \(\{S_{k_n}\}_{i=0}^{\infty} \) of the autocorrelation sequences of subsequence \(\{S_i\}_{i=0}^{\infty} \) defined as

\[
a_n(S_{k_n}, \tau) := \sum_{i=0}^{n} S_{k_n+S_{k_n(\tau+i)}}, \quad (0 \leq \tau \leq n), \tag{2}
\]

where the subscript \(k_n + \tau \) must be considered as reduced modulo \(n + 1 \). It can clearly be seen that
\[a_n(S_{k}, \tau) = a_n(S_{k}, n - \tau + 1) \] \hspace{1cm} (3) \\
and \\
\[\sum_{i=0}^{n} S_{ki}S_{k(i+r)} = \sum_{i=0}^{n-\tau} S_{ki}S_{k(i+r)} + \sum_{i=0}^{r-1} S_{k(i+n-\tau+1)}S_{ki}, \]

where \(\tau \) is positive integer number.

For example, for \(n = 6 \), \(k = 5 \) and \(\tau = 3 \) in (3), \\
\[a_{6}(S_{5}, 3) = S_{0}S_{15} + S_{2}S_{20} + S_{10}S_{25} + S_{15}S_{30} + S_{20}S_{0} + S_{25}S_{5} + S_{30}S_{10} = a_{6}(S_{5}, 4). \]

In this paper, taking generalized Fibonacci subsequence \(\{U_{ki}\}_{0}^{\infty} \) instead of subsequence \(\{S_{ki}\}_{0}^{\infty} \) in (2), we write the terms of the generalized Fibonacci autocorrelation sequences \(\{a_{k,n}(\tau)\}_{\infty} \) as \\
\[a_{k,n}(\tau) = \sum_{i=0}^{n} U_{ki}U_{k(i+r)} \]

and obtain some sums involving the numbers \(a_{k,n}(\tau) \), where an odd integer \(k \) and nonnegative integers \(\tau \), \(n \). Throughout this paper, we will take \(\{W_{n}\} \) instead of \(\{W_{n}(a,b;p,q)\} \).

The following Fibonacci identities and sums in [4] will be used widely throughout the proofs of Theorems:

\[V_{k(n+m)} + V_{k(m-n)} = \begin{cases} V_{km}V_{kn}, & \text{if } n \text{ is even} \\ \Delta U_{kn}U_{km}, & \text{if } n \text{ is odd} \end{cases} \] \hspace{1cm} (4) \\
\[V_{k(m+n)} - V_{k(m-n)} = \begin{cases} \Delta U_{km}U_{kn}, & \text{if } n \text{ is even} \\ V_{km}V_{kn}, & \text{if } n \text{ is odd} \end{cases} \] \hspace{1cm} (5) \\
\[U_{k(m+n)} + U_{k(m-n)} = \begin{cases} U_{km}V_{kn}, & \text{if } n \text{ is even} \\ U_{km}V_{kn}, & \text{if } n \text{ is odd} \end{cases} \] \hspace{1cm} (6) \\
\[U_{k(m+n)} - U_{k(m-n)} = \begin{cases} V_{km}U_{kn}, & \text{if } n \text{ is even} \\ U_{km}V_{kn}, & \text{if } n \text{ is odd} \end{cases} \] \hspace{1cm} (7)

\[\sum_{i=r}^{n} W_{k(i+r)} = \left[W_{k(r+c+d)} - W_{k(c(n+1)+d)} - (-1)^{c} W_{k(c(r+1)+d)} \right] \left[1 + V_{kc} + (-1)^{c} \right] \] \hspace{1cm} (8) \\
\[+ (-1)^{c} W_{k(c(n+r)+d)} \] \hspace{1cm} (9) \\
\[+ \frac{(-1)^{c}}{1 + V_{kc} + (-1)^{c}}, \] \hspace{1cm} (10)

and \\
\[\sum_{i=r}^{n} (-1)^{c} iW_{k(i+r)} = \left[\left(r + 2(r-1)(-1)^{c} \right) \right] \left[1 + V_{kc} + (-1)^{c} \right] \] \hspace{1cm} (11)

2. SOME IDENTITIES INVOLVING THE TERMS \(a_{k,n}(\tau) \) \((a_{k,n}(\tau) \) TERİMLERİNDER \(İÇEREN BAZI ÖZELLİKLERİ)
In this section, we will give closed-form expressions for terms of the generalized Fibonacci autocorrelation sequences \(\{a_{k,n}(\tau)\}_{\tau}^\infty \). Now, we give auxiliary Lemma before the proof of main Theorems.

Lemma 2.1. Let \(k \) be an odd integer number.

For even \(\tau \),

\[
V_k a_{k,n}(\tau) = \begin{cases}
U_{k(n+1)} U_{k(n-\tau+1)} + U_{k,0} U_{k,\tau}, & \text{if } n \text{ is even}, \\
U_{k,n} \left(U_{k(n-\tau+1)} + U_{k,\tau} \right), & \text{if } n \text{ is odd}
\end{cases}
\]

and for odd \(\tau \),

\[
V_k a_{k,n}(\tau) = \begin{cases}
U_{k,n} U_{k(n-\tau+1)} + U_{k(n+1)} U_{k(\tau-1)}, & \text{if } n \text{ is even}, \\
U_{k(n+1)} \left(U_{k(n-\tau)} + U_{k(\tau-1)} \right), & \text{if } n \text{ is odd}
\end{cases}
\]

Proof. Let \(n \) and \(\tau \) be even integers. Using Binet formula of generalized Fibonacci sequence \(\{U_{kn}\} \), we write

\[
a_{k,n}(\tau) = \sum_{i=0}^{n-\tau} U_{k,i} U_{k(n+1)-\tau+i} + \sum_{i=0}^{\tau-1} U_{k,i} U_{k(n+1)-\tau+i}
\]

\[
= \frac{1}{\Delta} \left\{ \sum_{i=0}^{n-\tau} \left(\alpha^i \beta^{(2i+\tau)} + \beta^i \alpha^{(2i+\tau)} - \beta^{2i} \alpha^{(i+\tau)} - \alpha^i \beta^{(i+\tau)} \right)
\right.
\]

\[
+ \sum_{i=0}^{\tau-1} \left(\alpha^{2i+n-\tau+1} + \beta^{2i+n-\tau+1} - \beta^{2i} \alpha^{(i+n-\tau+1)} - \alpha^i \beta^{(i+n-\tau+1)} \right) \right\}
\]

\[
= \frac{1}{\Delta} \left\{ \sum_{i=0}^{n-\tau} \left(V_{k(2i+\tau)} - (-1)^i V_{k(\tau+1)} \right)
\right.
\]

\[
+ \sum_{i=0}^{\tau-1} \left(V_{k(2i+n-\tau+1)} - (-1)^i V_{k(n+1)} \right) \right\}
\]

From (8) and the sums

\[
\sum_{i=0}^{n-\tau} (-1)^i = \begin{cases}
1, & \text{if } n, \tau \text{ are same parities}, \\
0, & \text{if } n, \tau \text{ are different parities}
\end{cases}
\]

\[
\sum_{i=0}^{\tau-1} (-1)^i = \begin{cases}
1, & \text{if } \tau \text{ is odd,} \\
0, & \text{if } \tau \text{ is even}
\end{cases}
\]

we write

\[
\Delta a_{k,n}(\tau) = \left(V_{k(2n-\tau+1)} - V_{k(\tau+1)} + V_{k(n+\tau)} - V_{k(n-\tau)} \right) / V_k .
\]

By (5), we have

\[
V_k a_{k,n}(\tau) = U_{k(n+1)} U_{k(n-\tau+1)} + U_{k,0} U_{k,\tau}.
\]

The other equalities are obtained similar to the proof. Thus we have the conclusion.

For example, for \(a = \tau = 0 \) and \(b = k = p = 1 \) in Lemma 2.1, it is clearly seen that \(a_{k,n}(0) = F_{n+1} F_n / [1] \).

Now, we will investigate some sums involving the terms \(a_{k,n}(\tau) \).

Theorem 2.1. Let \(k \) be an odd integer number. We have

\[
V_k \sum_{\tau=0}^{n} (-1)^{\tau} a_{k,n}(\tau)
\]

\[
= \begin{cases}
\left(U_{k(n+1)} - U_{k,n} + U_k \right)^2 / V_k, & \text{if } n \text{ is odd,} \\
U_{k(n+1)} U_{k,n}, & \text{if } n \text{ is even}
\end{cases}
\]

and

\[
V_k V_{3k} \sum_{\tau=0}^{n} (-1)^{\tau} a_{k,n-\tau}(i)
\]

\[
= \begin{cases}
\left(U_{k(n-1) + V_{k(2n+4)} - V_{k(2n+1)}} \right) / \Delta, & \text{if } n \text{ is odd,} \\
- V_{k(n-1)} + V_{3k} \left(V_k + V_{2k} \right) / \Delta V_k, & \text{if } n \text{ is even}
\end{cases}
\]

\[
= \begin{cases}
\left(U_{k(n+2)} + V_{2k} (V_k - 2) \right) / \Delta V_k, & \text{if } n \text{ is odd,} \\
V_{k(n+2)} - V_{3k} (V_k - 2) / \Delta V_k, & \text{if } n \text{ is even}
\end{cases}
\]

Proof. For even number \(n \), observed that

\[
\sum_{\tau=0}^{n} (-1)^{\tau} a_{k,n}(\tau) = a_{k,n}(0) - a_{k,n}(1) + ... + a_{k,n}(n).
\]
From the equality \(a_{k,n}(i) = a_{k,n}(n-i+1) \) and Lemma 2.1, we get

\[
\sum_{i=0}^{n} (-1)^{i} a_{k,n}(i) = a_{k,n}(0) - a_{k,n}(1) + \ldots - a_{k,n}(n-1) + a_{k,n}(n) = a_{k,n}(0) - \sum_{r=1}^{(n-1)/2} a_{k,n}(2\tau) - \sum_{r=1}^{(n+1)/2} a_{k,n}(2\tau-1).
\]

For odd number \(n \), we write

\[
\sum_{i=0}^{n} (-1)^{i} a_{k,n}(i) = a_{k,n}(0) + \sum_{r=1}^{(n-1)/2} a_{k,n}(2\tau) = \sum_{i=0}^{n} (-1)^{i} a_{k,n}(i) = a_{k,n}(0) + \sum_{r=1}^{(n+1)/2} a_{k,n}(2\tau-1).
\]

Using the equality \(U_{k,n}^2 - U_{k(n-1),k(n+1)} = U_k^2 \) in [5], (7), (8) and Lemma 2.1, we have the claimed result. The remaining formulas are similarly proven.

Theorem 2.2. Let \(k \) be an odd integer number. We have

\[
V_k^2 \sum_{i=0}^{n} i a_{k,n}(i) = (n+1) \times \begin{cases} (U_{k(n+1)} + U_{kn})(U_{kn} - U_k), & \text{if } n \text{ is odd} \\ U_{k(n+1)}(U_{kn} + U_{k(n-1)} - U_k) - U_{kn} U_k, & \text{if } n \text{ is even} \end{cases}
\]

and

\[
V_k^2 \sum_{i=0}^{n} (-1)^{i} i a_{k,n}(i) = \begin{cases} (n+1)(U_{kn} - U_{k(n+1)})(U_{kn} - U_k), & \text{if } n \text{ is odd} \\ (n+1)(U_{kn} U_k - U_{k(n+1)} U_{k(n-1)}) + (n-1)U_{k(n+1)}(U_{kn} - U_k) + 4U_{kn}(U_{k(n+1)} - U_{kn})/V_k, & \text{if } n \text{ is even} \end{cases}
\]

Proof. For odd number \(n \), we write

\[
\sum_{i=0}^{n} a_{k,n}(i) = a_{k,n}(1) + 2a_{k,n}(2) + \ldots + na_{k,n}(n) = \sum_{i=0}^{(n-1)/2} 2ia_{k,n}(2i) + \sum_{i=0}^{(n-1)/2} (2i+1)a_{k,n}(2i+1).
\]

By Lemma 2.1, we have

\[
\sum_{i=0}^{n} i a_{k,n}(i) = \frac{1}{V_k} \left\{ U_{kn} \sum_{i=0}^{(n-1)/2} 2i(U_{k(n-2i+1)} + U_{2i}) + U_{k(n+1)} \sum_{i=0}^{(n+1)/2} (2i+1)(U_{k(n-2i-1)} + U_{2i}) \right\}.
\]

From (5), (7), (8) and (10), we get

\[
V_k^2 \sum_{i=0}^{n} i a_{k,n}(i) = (n+1)(U_{k(n+1)} + U_{kn})(U_{kn} - U_k)
\]

as claimed. Similarly, for even \(n \), the proof is clearly obtained. With the help of (11), the proof of the other result is given. Thus the proof is completed.

For example, taking \(a = 0 \) and \(b = k = 1 \) in (12), it is clearly seen that

\[
p^2 \sum_{i=0}^{n} (-1)^{i} a_{k,n}(i) = \begin{cases} (n+1)(U_{kn} - U_n)(1 - U_n), & \text{if } n \text{ is odd} \\ (n+1)(U_{kn} - U_{n+1} U_{n-1}) + (n-1)U_{n+1}(U_{n-1} - 1) + 4U_{n}(U_{n+1} - U_n)/p, & \text{if } n \text{ is even} \end{cases}
\]

Theorem 2.3. Let \(k \) be an odd integer number. We have

\[
\Delta U_{2k} \sum_{i=0}^{n} (-1)^{i(2i+1)} d_{k,n}(i) = \begin{cases} \Delta U_{k} U_{kn} U_{k(n+1)}, & \text{if } n \equiv 0 \pmod{4} \\ U_{k(n+1)} \times \begin{cases} (V_{k(n+1)} + V_{k(n-1)} + 2(V_k - V_{kn})), & \text{if } n \equiv 1 \pmod{4} \\ (V_k - 2)U_{k(n+1)} + (V_k + 2)U_k + 2V_k(U_{k(n+1)} - U_{kn}), & \text{if } n \equiv 2 \pmod{4} \\ V_k U_{kn}(V_{k(n+1)} - 2), & \text{if } n \equiv 3 \pmod{4} \end{cases} \end{cases}
\]
\[\Delta V_k U_{3k} \sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) \]

\[= \begin{cases}
U_{k(2n+4)} - U_{k(2n+1)} + U_{3k} (V_k + 1), & \text{if } n \text{ is odd} \\
(-1)^{\frac{n}{2}} (V_k + V_{2k}) U_{k(n-1)^2}, & \text{if } n \text{ is even}
\end{cases} \]

\[+ \frac{1}{\Delta U_{3k}} \left(V_k \left(U_{k(n+1)} + U_{kn} \right) (2 - V_{kn})
ight) \]

\[\Delta U_k 2k \sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) = \begin{cases}
U_{k(2n+4)} - U_{k(2n+1)} + U_{3k} (V_k + V_{2k}) U_{k(n+1)^2} + U_{3k}, & \text{if } n \equiv 0(\text{mod } 4) \\
\Delta U_k \left(U_k^2 - U_{k(n+1)} U_{kn} - U_{kn}^2 \right), & \text{if } n \equiv 1(\text{mod } 4) \\
-\Delta U_k U_k U_{k(n+1)} U_{kn}, & \text{if } n \equiv 2(\text{mod } 4) \\
-\Delta U_k U_{kn} (V_k - 2), & \text{if } n \equiv 3(\text{mod } 4)
\end{cases} \]

Proof. For the second sum, the proof can be given. Let \(n \equiv 0(\text{mod } 4) \). Observed that

\[\sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) \]

\[= (-1)^{\frac{1}{2}} a_{k,n} (0) + (-1)^{\frac{1}{2}} a_{k,n-1} + ... + (-1)^{\frac{n}{2}} a_{k,0} (n) \]

\[= a_{k,n} (0) - a_{k,n-1} (1) + ... + a_{k,1} (n-1) + a_{k,0} (n) \]

\[= a_{k,n} (0) + \sum_{i=1}^{\frac{n}{2}} a_{k,n-4i+1} (4i) + \sum_{i=1}^{\frac{n}{2}} a_{k,n-4i+3} (4i-3). \]

By (5) and Lemma 2.1, we get

\[V_k \sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) = U_{k(n+1)} U_{kn} \]

\[+ \frac{1}{\Delta U_{3k}} \left(V_{4ki} + U_{k(2n-12i+7)} \right) \]

From (4)-(6) and (8), we write

\[\Delta V_k U_{3k} \sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) \]

\[= U_{k(n+1)} U_{kn} + \frac{1}{\Delta U_{3k}} \left(U_{k(n-1)} - U_{k(2n+1)} \right) \]

\[- U_{k(2n-2)} + U_{k(n+2)} + \frac{1}{\Delta U_{k}} \left(U_{2k} - U_{k(n+2)} \right) \]

\[+ U_k - U_{k(n+1)} \]

\[= \frac{U_{k(2n+4)} - U_{k(2n+1)} - (V_k + V_{2k}) U_{k(n+2)} + U_{3k}}{\Delta U_{3k}} \]

as claimed. For \(n = 2(\text{mod } 4) \),

\[\Delta V_k U_{3k} \sum_{i=0}^{n} (-1)^{(i+1)} a_{k,n-i}(i) \]

\[= U_{k(2n+4)} - U_{k(2n+1)} + (V_k + V_{2k}) U_{k(n+2)} + U_{3k}. \]

By (13) and (14), for even number \(n \), the desired results are obtained. Similarly, for \(n = 1,3(\text{mod } 4) \), the remaining results are proven. The proof of the other result is hold. Thus, the proof is completed.

Theorem 2.4. Let \(k \) be an odd integer number. We have

\[\Delta U_{2k} \sum_{i=0}^{n} (-1)^{(i+2)} a_{k,n-i}(i) \]

\[= \begin{cases}
V_k \left(U_{k(n+1)} + U_{kn} \right) (2 - V_{kn}), & \text{if } n \equiv 0(\text{mod } 4) \\
\Delta U_k \left(U_k^2 - U_{k(n+1)} U_{kn} - U_{kn}^2 \right), & \text{if } n \equiv 1(\text{mod } 4) \\
-\Delta U_k U_k U_{k(n+1)} U_{kn}, & \text{if } n \equiv 2(\text{mod } 4) \\
-\Delta U_k U_{kn} (V_k - 2), & \text{if } n \equiv 3(\text{mod } 4)
\end{cases} \]
Some sums related to the terms of generalized Fibonacci autocorrelation sequences

and

\[\Delta V_k V_{2k} U_{3k} \sum_{n=0}^{n} (-1)^{n+1} a_{k,n} (i) \]

\[V_{2k} \left(U_{3k} - U_{2(3n+4)} - U_{2(3n+1)} \right) + U_{2k} \left(V_{k(2n+3)} + \Delta U_{k} U_{3k} \right) + V_{k}^2 U_{k(n+1)} + V_{k}^2 U_{k(n+2)} + V_{k}^2 U_{k(n+3)} + U_{3k} (V_k - 1) \]

\[= \Delta U_{2k} V_{2k} \left(-U_{2(3n+4)} - U_{2(3n+1)} \right) + (V_k - V_{2k}) U_{k(n+2)} + U_{3k} (V_k - 1) + V_{k} U_{2k} U_{k(n-1)} + 2U_{3k} V_{4k} + U_{4} V_{k(n-1)} \]

if \(n \equiv 0 \pmod{4} \)

if \(n \equiv 1 \pmod{4} \)

if \(n \equiv 2 \pmod{4} \)

if \(n \equiv 3 \pmod{4} \)

Proof. Let \(n \equiv 0 \pmod{4} \). Consider that

\[\sum_{i=0}^{n} (-1)^{i+1} a_{k,n} (i) = -a_{k,n} (0) - a_{k,n} (1) + a_{k,n} (2) + \ldots + a_{k,n} (n-1) - a_{k,n} (n) \]

\[= -\sum_{i=1}^{n/4} a_{k,n} (4i - 4) \sum_{i=1}^{n/4} a_{k,n} (4i - 3) + \sum_{i=1}^{n/4} a_{k,n} (4i - 2) \sum_{i=1}^{n/4} a_{k,n} (4i - 1) - a_{k,n} (n) \]

From (7) and Lemma 2.1, we write

\[\sum_{i=0}^{n} (-1)^{i+1} a_{k,n} (i) = -\frac{U_{kn}^2}{V_k} \left(U_{k(n+1)} + U_{kn} \right) \sum_{i=1}^{n/4} \left(U_{k(n-4i+3)} - U_{k(4i-3)} \right) \]

By (5), (7) and (8), we have

\[\sum_{i=0}^{n} (-1)^{i+1} a_{k,n} (i) = -\frac{1}{V_k} U_{kn}^2 - \frac{V_k}{\Delta U_{2k}} \left(U_{k(n+1)} + U_{kn} \right) (V_{kn} - 2) \]

if \(n \equiv 0 \pmod{4} \)

if \(n \equiv 1 \pmod{4} \)

as claimed. For \(n \equiv 1, 2, 3 \pmod{4} \), the proofs are clearly given. Similarly, the other result is given. Thus, we have the conclusion.

REFERENCES (KAYNAKÇA)

