EKSENEL YÜK ALTINDAKİ SOMUN CIVATA
BAĞLANTILARININ BİLGİSAYAR DESTEKLI ANALİZİ

Vahdet UÇAR, M. Emre KARA

Sakarya Üniversitesi Mühendislik Fakültesi Makine Bölümü, Esentepe Kampüsü-Adapazari

ÖZET


II. MODEL

Civata somun bağlantlarının incelemesinde ilk olarak eksenel yük altında klasik bir civata somun bağlantısının davranışı ele alınmıştır. Bu çalışmada axisymmetric model
tipi kullanılmıştır. Axisymmetric model tipi eğer geometri, yükler ve sınırların bir dönmeye eksen etrafında sabit ise kullanılabilir. Yükler ve sınırlamalar koordinat sisteminin X-Y düzleminde tanımlanırlar ve dönmeye eksen X=0 ve Z=0 hatti varsayılır. Axisymmetric modellere örnek olarak silindirik ve daireel yapılar verilebilir (Şekil 1-3). Axisymmetric analize model tipine göre 2 boyutlu katı (Şekil 2.a) veya 2 boyutlu shell (Şekil 2.b) eleman kullanılabilir.

Burada axisymmetric analiz tipi Pro\Mechanica’nın bağımsız modunda aktarlan geometri üzerinde civata somun dişleri ve somun zemin arasında temas hatları, zemin bloğu üzerindeki sınırlı dereler ve civata üzerinde yük değerleri atanmıştır. Zemin bloğu alt hatti boyunca her yönde sınırlanmıştır. Yük değerleri civatanın alt çizgisine eksenel yüksek temsilen toplam değeri 10 000N olan yük değeri verilmiştir. Sınır şartlarının atanmasından ve elemanların oluşturulması sonra analiz öncesi modelin son halı şekil 4’té görülebilir. Burada da görülceği gibi elemanlar temas bölgesinde yoğunlaşmıştır.

Yükün uygulandığı civata alt bölgesi
Bütün serbestlik dereceleri sınırlanılan zemin parçası

Şekil 4: Modelde mesh işlemleri ve sınır şartları


Şekil 5: 0-255 N/mm² arası Von Misses gerilme dağılımı
Tablo 1: Dişlere göre yük ağırlımı

<table>
<thead>
<tr>
<th>Dişler</th>
<th>Yük Değeri [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4195.874</td>
</tr>
<tr>
<td>2</td>
<td>3508.094</td>
</tr>
<tr>
<td>3</td>
<td>2868.115</td>
</tr>
<tr>
<td>4</td>
<td>2487.883</td>
</tr>
<tr>
<td>5</td>
<td>2179.287</td>
</tr>
<tr>
<td>6</td>
<td>1836.798</td>
</tr>
</tbody>
</table>

Şekil 6: Dişlere göre yük dağılımı grafiği

III. FARKLI SOMUN KONSTRÜKSİYONLARI

Normal somun kullanımının yüksek eksenel yüklerdeki sıkıntılarnı engellemek, yani somun dişlerinin bu taşıma hareketini bütün dişlerde daha homojen yapması için farklı somun tipleri önerilebilir. Bu çalışmada üç farklı somun konstrüksiyonunda dişlerdeki yük durumu incelenmiş ve karşılaştırılmıştır. Şekil 7'de bu somun tipleri görülebilir. Bu somun tipleri diş kısımları eksenel yük uygulanmasında somunda oluşan içe doğru basma eğilimini esneme yaparak karşılaşacak şekilde tasarlanmıştır. Yani bu somun tipleri eksenel yükte klasik somun civata- somun bağlantısında civata ve zemin arasındaki izafi hareketen dolayı siyrlıma zorlanır dişler somunun içe doğru bir yayılma eğilim göstermesiyle yükü homojen olarak taşır. Bu somunlar için normal somun bağlantısıyla diş ölçüleri ve sayları, yük değeri ve sınır şartlarını aynı olmak analizler yapılmış, ve civata-somun dişler arasındaki yükün dağılımı incelenmiştir. Bu somunlar için bulunan Von Misse gerilmesi dağılımı klasik somun bağlantısıyla karşılaştırılmış amaçla yine 0-225 N/mm² arasında şekil 8-9-10'ında ve dişlere gelen yük değerleri değerleri tablo 2' e görülebilir.

Somun-1

Somun-2

Somun-3

Şekil 7: Alternatif somun tipleri
Şekil 8: Somun-1'de 0-225 N/mm² arası Von Misses gerilme dağılımı

Şekil 9: Somun-2'de 0-225 N/mm² arası Von Misses gerilme dağılımı

Şekil 10: Somun-3'de 0-225 N/mm² arası Von Misses gerilme dağılımı

Tablo 2: Alternatif somun tiplerinde dişlerdeki yük dağılımı

<table>
<thead>
<tr>
<th>Dişler</th>
<th>Somun-1 [N]</th>
<th>Somun-2 [N]</th>
<th>Somun-3 [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1944</td>
<td>2366</td>
<td>2071</td>
</tr>
<tr>
<td>2</td>
<td>1776</td>
<td>2050</td>
<td>1837</td>
</tr>
<tr>
<td>3</td>
<td>1684</td>
<td>1894</td>
<td>1721</td>
</tr>
<tr>
<td>4</td>
<td>1719</td>
<td>1671</td>
<td>1726</td>
</tr>
<tr>
<td>5</td>
<td>1866</td>
<td>1609</td>
<td>1758</td>
</tr>
<tr>
<td>6</td>
<td>2276</td>
<td>1641</td>
<td>2222</td>
</tr>
</tbody>
</table>
IV. SONUÇ

KAYNAKLAR